Record Information
Version 1.0
Update Date 1/22/2018 11:54:54 AM
Metabolite IDPAMDB000345
Identification
Name: ADP
Description:Adenosine diphosphate, abbreviated ADP, is a nucleotide. It is an ester of pyrophosphoric acid with the nucleotide adenine. ADP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase adenine.
Structure
Thumb
Synonyms:
  • Adenosindiphosphorsaeure
  • Adenosine 5'-pyrophosphate
  • Adenosine 5'-pyrophosphoric acid
  • Adenosine diphosphate
  • Adenosine diphosphoric acid
  • Adenosine pyrophosphate
  • Adenosine pyrophosphoric acid
  • Adenosine-5'-diphosphate
  • Adenosine-5'-diphosphoric acid
  • Adenosine-5-diphosphate
  • Adenosine-5-diphosphoric acid
  • Adenosine-diphosphate
  • Adenosine-diphosphoric acid
  • ADP
Chemical Formula: C10H15N5O10P2
Average Molecular Weight: 427.2011
Monoisotopic Molecular Weight: 427.029414749
InChI Key: XTWYTFMLZFPYCI-KQYNXXCUSA-N
InChI:InChI=1S/C10H15N5O10P2/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(17)6(16)4(24-10)1-23-27(21,22)25-26(18,19)20/h2-4,6-7,10,16-17H,1H2,(H,21,22)(H2,11,12,13)(H2,18,19,20)/t4-,6-,7-,10-/m1/s1
CAS number: 58-64-0
IUPAC Name:[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid
Traditional IUPAC Name: adenosine-diphosphate
SMILES:NC1=NC=NC2=C1N=CN2[C@@H]1O[C@H](COP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O
Chemical Taxonomy
Taxonomy DescriptionThis compound belongs to the class of organic compounds known as purine ribonucleoside diphosphates. These are purine ribobucleotides with diphosphate group linked to the ribose moiety.
Kingdom Organic compounds
Super ClassNucleosides, nucleotides, and analogues
Class Purine nucleotides
Sub ClassPurine ribonucleotides
Direct Parent Purine ribonucleoside diphosphates
Alternative Parents
Substituents
  • Purine ribonucleoside diphosphate
  • N-glycosyl compound
  • Glycosyl compound
  • Organic pyrophosphate
  • Monosaccharide phosphate
  • 6-aminopurine
  • Purine
  • Imidazopyrimidine
  • Monoalkyl phosphate
  • Aminopyrimidine
  • Imidolactam
  • Alkyl phosphate
  • Pyrimidine
  • Primary aromatic amine
  • Phosphoric acid ester
  • Organic phosphoric acid derivative
  • Organic phosphate
  • N-substituted imidazole
  • Monosaccharide
  • Saccharide
  • Heteroaromatic compound
  • Oxolane
  • Imidazole
  • Azole
  • Secondary alcohol
  • 1,2-diol
  • Oxacycle
  • Azacycle
  • Organoheterocyclic compound
  • Hydrocarbon derivative
  • Primary amine
  • Organooxygen compound
  • Organonitrogen compound
  • Amine
  • Alcohol
  • Aromatic heteropolycyclic compound
Molecular Framework Aromatic heteropolycyclic compounds
External Descriptors
Physical Properties
State: Solid
Charge:-2
Melting point: Not Available
Experimental Properties:
PropertyValueSource
Predicted Properties
PropertyValueSource
Water Solubility3.27 mg/mLALOGPS
logP-1.6ALOGPS
logP-5.3ChemAxon
logS-2.1ALOGPS
pKa (Strongest Acidic)1.77ChemAxon
pKa (Strongest Basic)4.99ChemAxon
Physiological Charge-2ChemAxon
Hydrogen Acceptor Count12ChemAxon
Hydrogen Donor Count6ChemAxon
Polar Surface Area232.6 Å2ChemAxon
Rotatable Bond Count6ChemAxon
Refractivity84.94 m3·mol-1ChemAxon
Polarizability34.24 Å3ChemAxon
Number of Rings3ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations: Cytoplasm
Reactions:
ADP + Reduced Thioredoxin > dADP + Water + Oxidized Thioredoxin
Adenosine triphosphate + Water + Isethionic acid > ADP + Hydrogen ion + Isethionic acid + Phosphate
Adenosine triphosphate + Water + Potassium > ADP + Hydrogen ion + Potassium + Phosphate
Adenosine triphosphate + Water + Molybdate > ADP + Hydrogen ion + Molybdate + Phosphate
Adenosine triphosphate + Water + Putrescine > ADP + Hydrogen ion + Phosphate + Putrescine
Adenosine triphosphate + Water + Butanesulfonate > ADP + Butanesulfonate + Hydrogen ion + Phosphate
ADP + glutaredoxin > dADP + glutaredoxin + Water
Adenosine triphosphate + Water + Spermidine > ADP + Hydrogen ion + Phosphate + Spermidine
Adenosine triphosphate + Water + D-Alanyl-D-alanine > ADP + D-Alanyl-D-alanine + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + D-Galactose > ADP + D-Galactose + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + L-Arginine > ADP + L-Arginine + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + Sulfate > ADP + Hydrogen ion + Phosphate + Sulfate
Adenosine triphosphate + Water + Thiosulfate > ADP + Hydrogen ion + Phosphate + Thiosulfate
Adenosine triphosphate + Water + L-Leucine > ADP + Hydrogen ion + L-Leucine + Phosphate
Adenosine triphosphate + Water + Nickel > ADP + Hydrogen ion + Nickel + Phosphate
Adenosine triphosphate + Water + Ribose > ADP + Hydrogen ion + Phosphate + Ribose
L-Aspartic acid + Adenosine triphosphate <> L-Aspartyl-4-phosphate + ADP
2 Adenosine triphosphate + L-Glutamine + Water + Hydrogen carbonate >2 ADP + Carbamoylphosphate + L-Glutamate +2 Hydrogen ion + Phosphate
Adenosine triphosphate + D-Xylulose <> ADP + Hydrogen ion + Xylulose 5-phosphate
Adenosine triphosphate + L-Threo-2-pentulose <> ADP + Hydrogen ion + L-Xylulose 5-phosphate
Adenosine triphosphate + Water + Thiamine > ADP + Hydrogen ion + Phosphate + Thiamine
Adenosine triphosphate + Water + Ferric coprogen > ADP + Ferric coprogen + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + Aerobactin > ADP + Aerobactin + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + Ferrichrome > ADP + Ferrichrome + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + Ferroxamine > ADP + Ferroxamine + Hydrogen ion + Phosphate
Acetyl-CoA + Adenosine triphosphate + Hydrogen carbonate <> ADP + Hydrogen ion + Malonyl-CoA + Phosphate
Adenosine triphosphate + Water + L-Methionine > ADP + Hydrogen ion + L-Methionine + Phosphate
Adenosine triphosphate + Water + D-Methionine > ADP + Hydrogen ion + D-Methionine + Phosphate
Adenosine triphosphate + Water + Taurine > ADP + Hydrogen ion + Phosphate + Taurine
2 D-Alanine + Adenosine triphosphate <> ADP + D-Alanyl-D-alanine + Hydrogen ion + Phosphate
Adenosine triphosphate + Uridine 5'-diphosphate <> ADP + Uridine triphosphate
Adenosine triphosphate + dGDP <> ADP + dGTP
Adenosine triphosphate + Guanosine diphosphate <> ADP + Guanosine triphosphate
Adenosine triphosphate + dCDP <> ADP + dCTP
Adenosine triphosphate + dTDP <> ADP + Thymidine 5'-triphosphate
Adenosine triphosphate + dADP <> ADP + dATP
Adenosine triphosphate + Carbon dioxide + Ammonium <> ADP + Carbamoylphosphate +2 Hydrogen ion
Adenosine triphosphate + Water + Ferric enterobactin > ADP + Ferric enterobactin + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + ferric 2,3-dihydroxybenzoylserine > ADP + ferric 2,3-dihydroxybenzoylserine + Hydrogen ion + Phosphate
Adenosine triphosphate + Water > ADP + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + L-Glutamate > ADP + L-Glutamate + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + L-Aspartic acid > ADP + L-Aspartic acid + Hydrogen ion + Phosphate
Adenosine triphosphate + Coenzyme A + Succinic acid <> ADP + Phosphate + Succinyl-CoA
Adenosine triphosphate + Water + L-Glutamine > ADP + L-Glutamine + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + Glutathione > ADP + Glutathione + Hydrogen ion + Phosphate
Adenosine triphosphate + L-Cysteine + Water > ADP + Hydrogen ion + Phosphate + L-Cysteine
Adenosine triphosphate + Uridine 5'-monophosphate <> ADP + Uridine 5'-diphosphate
Adenosine triphosphate + Water + Ethanesulfonate > ADP + Ethanesulfonate + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + Methanesulfonate > ADP + Hydrogen ion + Methanesulfonate + Phosphate
Adenosine triphosphate + Water + Sulfoacetate > ADP + Hydrogen ion + Phosphate + Sulfoacetate
Adenosine triphosphate + Water + L-Alanine-D-glutamate-meso-2,6-diaminoheptanedioate-D-alanine > L-Alanine-D-glutamate-meso-2,6-diaminoheptanedioate-D-alanine + ADP + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + L-alanine-D-glutamate-meso-2,6-diaminoheptanedioate > L-alanine-D-glutamate-meso-2,6-diaminoheptanedioate + ADP + Hydrogen ion + Phosphate
Adenosine triphosphate + Pyridoxal <> ADP + Hydrogen ion + Pyridoxal 5'-phosphate
[2Fe-1S] desulfurated iron-sulfur cluster + Adenosine triphosphate + Water + SufBCD scaffold complex + SufSE with bound sulfur > ADP +5 Hydrogen ion + Phosphate + SufBCD with bound [2Fe-2S] cluster + SufSE sulfur acceptor complex
Adenosine triphosphate + Water + Adenosylcobalamin > Adenosylcobalamin + ADP + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + Cob(I)alamin > ADP + Cob(I)alamin + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + Cobinamide > ADP + Cobinamide + Hydrogen ion + Phosphate
ADP + Hydrogen ion + Phosphoenolpyruvic acid <> Adenosine triphosphate + Pyruvic acid
Adenosine triphosphate + Water + Zinc > ADP + Hydrogen ion + Phosphate + Zinc
Adenosine triphosphate + Water + L-Arabinose > ADP + L-Arabinose + Hydrogen ion + Phosphate
Adenosine triphosphate + D-Galactose + Alpha-D-Galactose <> ADP + Galactose 1-phosphate + Hydrogen ion
4-Amino-5-hydroxymethyl-2-methylpyrimidine + Adenosine triphosphate <> 4-Amino-2-methyl-5-phosphomethylpyrimidine + ADP + Hydrogen ion + 4-amino-5-phosphonooxymethyl-2-methylpyrimidine
Adenosine triphosphate + Water + Choline > ADP + Choline + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + Betaine > ADP + Betaine + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + D-Glucose > ADP + D-Glucose + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + Heme > ADP + Hydrogen ion + Phosphate + Heme
Adenosine triphosphate + Water + L-Histidine > ADP + Hydrogen ion + L-Histidine + Phosphate
Adenosine triphosphate + Water + L-Lysine > ADP + Hydrogen ion + L-Lysine + Phosphate
Adenosine triphosphate + Water + Ornithine > ADP + Hydrogen ion + Ornithine + Phosphate
Adenosine triphosphate + dUDP <> ADP + Deoxyuridine triphosphate
Adenosine triphosphate + CDP <> ADP + Cytidine triphosphate
Adenosine triphosphate + Water + Carnitine > ADP + Carnitine + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + L-Proline > ADP + Hydrogen ion + Phosphate + L-Proline
Adenosine triphosphate + Water + Crotonobetaine > ADP + Crotonobetaine + Hydrogen ion + Phosphate
Acetic acid + Adenosine triphosphate <> Acetylphosphate + ADP
Adenosine triphosphate + Water + (enterobacterial common antigen)x4 core oligosaccharide lipid A > ADP + Hydrogen ion + Phosphate + (enterobacterial common antigen)x4 core oligosaccharide lipid A
Adenosine triphosphate + Water + (O16 antigen)x4 core oligosaccharide lipid A > ADP + Hydrogen ion + Phosphate + (O16 antigen)x4 core oligosaccharide lipid A
Adenosine triphosphate + Water + cold adapted KDO(2)-lipid (A) > ADP + Hydrogen ion + Phosphate + cold adapted KDO(2)-lipid (A)
Adenosine triphosphate + Water + core oligosaccharide lipid A > ADP + Hydrogen ion + Phosphate + core oligosaccharide lipid A
Adenosine triphosphate + Water + core oligosaccharide lipid A diphosphate > ADP + Hydrogen ion + Phosphate + core oligosaccharide lipid A diphosphate
Adenosine triphosphate + Water + KDO2-Lipid A > ADP + Hydrogen ion + Phosphate + KDO2-Lipid A
Adenosine triphosphate + Water + 4-Amino-4-deoxy-L-arabinose modified core oligosaccharide lipid A > ADP + Hydrogen ion + Phosphate + 4-Amino-4-deoxy-L-arabinose modified core oligosaccharide lipid A
Adenosine triphosphate + Water + KDO(2)-lipid IV(A) > ADP + Hydrogen ion + Phosphate + KDO(2)-lipid IV(A)
Adenosine triphosphate + Water + Phosphoethanolamine KDO(2)-lipid (A) > ADP + Hydrogen ion + Phosphate + Phosphoethanolamine KDO(2)-lipid (A)
Adenosine triphosphate + Shikimic acid <> ADP + Hydrogen ion + Shikimate 3-phosphate
Adenosine triphosphate + Water + Glycerophosphocholine > ADP + Glycerophosphocholine + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + Glycerylphosphorylethanolamine > ADP + Glycerylphosphorylethanolamine + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + Glycerol 3-phosphate > ADP + Glycerol 3-phosphate + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + Glycerol 2-phosphate > ADP + Glycerol 2-phosphate + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + Glycerophosphoglycerol > ADP + Glycerophosphoglycerol + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + Glycerophosphoserine > ADP + Glycerophosphoserine + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + Sn-Glycero-3-phospho-1-inositol > ADP + Sn-Glycero-3-phospho-1-inositol + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + L-Alanine > ADP + L-Alanine + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + L-Threonine > ADP + Hydrogen ion + Phosphate + L-Threonine
Adenosine triphosphate + Water + L-Isoleucine > ADP + Hydrogen ion + L-Isoleucine + Phosphate
Adenosine triphosphate + Water + L-Valine > ADP + Hydrogen ion + Phosphate + L-Valine
Adenosine triphosphate + Water + Cysteinylglycine > ADP + Cysteinylglycine + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + L-Prolinylglycine > ADP + Hydrogen ion + Phosphate + L-Prolinylglycine
Adenosine triphosphate + Water + D-Xylose > ADP + Hydrogen ion + Phosphate + D-Xylose
Adenosine triphosphate + Water + Phosphate > ADP + Hydrogen ion +2 Phosphate
Adenosine triphosphate + FADH2 + 2 Iron + Water + SufBCD scaffold complex + 2 SufSE with bound sulfur > ADP + FAD +7 Hydrogen ion + Phosphate + SufBCD with bound [2Fe-2S] cluster +2 SufSE sulfur acceptor complex
Adenosine triphosphate + FADH2 + 2 Iron + Water + SufBCD with bound [2Fe-2S] cluster + 2 SufSE with bound sulfur > ADP + FAD +7 Hydrogen ion + Phosphate + SufBCD with two bound [2Fe-2S] clusters +2 SufSE sulfur acceptor complex
Adenosine triphosphate + L-Glutamate + Ammonium > ADP + L-Glutamine + Hydrogen ion + Phosphate
Adenosine triphosphate + Fructose 6-phosphate > ADP + Fructose 1,6-bisphosphate + Hydrogen ion
Adenosine triphosphate + Water + D-Maltose > ADP + Hydrogen ion + D-Maltose + Phosphate
Adenosine triphosphate + Water + Maltotriose > ADP + Hydrogen ion + Maltotriose + Phosphate
Adenosine triphosphate + Water + Maltotetraose > ADP + Hydrogen ion + Maltotetraose + Phosphate
Adenosine triphosphate + Water + 1,4-alpha-D-glucan > 1,4-alpha-D-glucan + ADP + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + Maltohexaose > ADP + Hydrogen ion + Maltohexaose + Phosphate
Adenosine triphosphate + Water + Maltopentaose > ADP + Hydrogen ion + Maltopentaose + Phosphate
Adenosine triphosphate + Water + D-Allose > ADP + D-Allose + Hydrogen ion + Phosphate
Adenosine triphosphate + Gluconic acid <> 6-Phosphogluconic acid + ADP + Hydrogen ion
Adenosine triphosphate + Water + Fe(III)dicitrate > ADP +2 Citric acid + Fe3+ + Hydrogen ion + Phosphate
Adenosine triphosphate + L-Homoserine <> ADP + Hydrogen ion + O-Phosphohomoserine
Adenosine triphosphate + Riboflavin <> ADP + Flavin Mononucleotide + Hydrogen ion
Adenosine triphosphate + Coenzyme A + Carnitine > ADP + L-Carnitinyl-CoA + Phosphate
Adenosine triphosphate + Coenzyme A + Carnitine > ADP + D-Carnitinyl-CoA + Phosphate
Adenosine triphosphate + Coenzyme A + Crotonobetaine > ADP + Crotonobetainyl-CoA + Phosphate
Diadenosine tetraphosphate + Water <>2 ADP +2 Hydrogen ion
Adenosine triphosphate + L-Ribulose > ADP + Hydrogen ion + L-Ribulose 5-phosphate
Diaminopimelic acid + Adenosine triphosphate + UDP-N-Acetylmuramoyl-L-alanyl-D-glutamate > ADP + Hydrogen ion + Phosphate + UDP-N-Acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminoheptanedioate
D-Alanyl-D-alanine + Adenosine triphosphate + UDP-N-Acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminoheptanedioate > ADP + Hydrogen ion + Phosphate + UDP-N-Acetylmuramoyl-L-alanyl-D-glutamyl-6-carboxy-L-lysyl-D-alanyl-D-alanine
Adenosine triphosphate + D-Glutamic acid + UDP-N-Acetylmuramoyl-L-alanine <> ADP + Hydrogen ion + Phosphate + UDP-N-Acetylmuramoyl-L-alanyl-D-glutamate
L-Alanine + Adenosine triphosphate + UDP-N-Acetylmuraminate <> ADP + Hydrogen ion + Phosphate + UDP-N-Acetylmuramoyl-L-alanine
Adenosine triphosphate + L-Glutamate > ADP + L-Glutamic acid 5-phosphate
Adenosine triphosphate + D-Fructose > ADP + Fructose 6-phosphate + Hydrogen ion
Adenosine triphosphate + Thiamine monophosphate <> ADP + Thiamine pyrophosphate
Adenosine triphosphate + 7-Deaza-7-carboxyguanine + Ammonium > ADP + Hydrogen ion + Water + Phosphate + 7-Cyano-7-carbaguanine
Adenosine monophosphate + Inosine triphosphate <> ADP + IDP
Adenosine monophosphate + Guanosine triphosphate <> ADP + Guanosine diphosphate
Adenosine + Adenosine triphosphate > ADP + Adenosine monophosphate + Hydrogen ion
Adenosine triphosphate + Deoxyadenosine monophosphate <> ADP + dADP
Adenosine triphosphate + Guanosine > ADP + Guanosine monophosphate + Hydrogen ion
Adenosine triphosphate + Inosine <> ADP + Hydrogen ion + Inosinic acid
Adenosine triphosphate + Copper + Water > ADP + Hydrogen ion + Phosphate + Copper
Adenosine triphosphate + Glyceric acid > 3-Phosphoglycerate + ADP + Hydrogen ion
5-Aminoimidazole ribonucleotide + Adenosine triphosphate + Hydrogen carbonate > 5-Phosphoribosyl-5-carboxyaminoimidazole + ADP + Hydrogen ion + Phosphate
Adenosine triphosphate + Cytidine monophosphate <> ADP + CDP
Adenosine triphosphate + dCMP <> ADP + dCDP
Adenosine triphosphate + Water + PA(16:0/16:0) > ADP + Hydrogen ion + Phosphate + PA(16:0/16:0)
Adenosine triphosphate + Water + PE(14:0/14:0) > ADP + Hydrogen ion + Phosphate + PE(14:0/14:0)
Adenosine triphosphate + Water + PG(16:0/16:0) > ADP + Hydrogen ion + Phosphate + PG(16:0/16:0)
Adenosine triphosphate + Water + PG(16:1(9Z)/16:1(9Z)) > ADP + Hydrogen ion + Phosphate + PG(16:1(9Z)/16:1(9Z))
Adenosine triphosphate + Water + PG(18:1(11Z)/18:1(11Z)) > ADP + Hydrogen ion + Phosphate + PG(18:1(11Z)/18:1(11Z))
Adenosine triphosphate + Water + PG(14:0/14:0) > ADP + Hydrogen ion + Phosphate + PG(14:0/14:0)
Adenosine triphosphate + Water + PG(12:0/12:0) > ADP + Hydrogen ion + Phosphate + PG(12:0/12:0)
Adenosine triphosphate + Water + PG(14:1(7Z)/14:1(7Z)) > ADP + Hydrogen ion + Phosphate + PG(14:1(7Z)/14:1(7Z))
Adenosine triphosphate + Water + PG(18:0/18:0) > ADP + Hydrogen ion + Phosphate + PG(18:0/18:0)
Adenosine triphosphate + Water + PGP(12:0/12:0) > ADP + Hydrogen ion + Phosphate + PGP(12:0/12:0)
Adenosine triphosphate + Water + PGP(14:0/14:0) > ADP + Hydrogen ion + Phosphate + PGP(14:0/14:0)
Adenosine triphosphate + Water + PGP(14:1(7Z)/14:1(7Z)) > ADP + Hydrogen ion + Phosphate + PGP(14:1(7Z)/14:1(7Z))
Adenosine triphosphate + Water + PGP(16:0/16:0) > ADP + Hydrogen ion + Phosphate + PGP(16:0/16:0)
Adenosine triphosphate + Water + PGP(16:1(9Z)/16:1(9Z)) > ADP + Hydrogen ion + Phosphate + PGP(16:1(9Z)/16:1(9Z))
Adenosine triphosphate + Water + PGP(18:0/18:0) > ADP + Hydrogen ion + Phosphate + PGP(18:0/18:0)
Adenosine triphosphate + Water + PGP(18:1(11Z)/18:1(11Z)) > ADP + Hydrogen ion + Phosphate + PGP(18:1(11Z)/18:1(11Z))
Adenosine triphosphate + 2,3,2',3'-Tetrakis(3-hydroxytetradecanoyl)-D-glucosaminyl-1,6-beta-D-glucosamine 1-phosphate > ADP + Hydrogen ion + 2,3,2'3'-Tetrakis(beta-hydroxymyristoyl)-D-glucosaminyl-1,6-beta-D-glucosamine 1,4'-bisphosphate
Adenosine triphosphate + Water + Nicotinic acid + Phosphoribosyl pyrophosphate > ADP + Nicotinamide ribotide + Phosphate + Pyrophosphate
Adenosine triphosphate + 5-Thymidylic acid <> ADP + dTDP
Adenosine triphosphate + Thiamine <> ADP + Hydrogen ion + Thiamine monophosphate
N-Acetyl-D-glucosamine + Adenosine triphosphate <> N-Acetyl-D-Glucosamine 6-Phosphate + ADP + Hydrogen ion
Adenosine triphosphate + Deoxyuridine > ADP + dUMP + Hydrogen ion
Adenosine triphosphate + Thymidine <> ADP + 5-Thymidylic acid + Hydrogen ion
Adenosine triphosphate + L-Glutamate + Putrescine + Ethylenediamine <> ADP + gamma-Glutamyl-L-putrescine + Hydrogen ion + Phosphate
Adenosine triphosphate + Formic acid + Glycineamideribotide > ADP + 5'-Phosphoribosyl-N-formylglycineamide + Hydrogen ion + Phosphate
Adenosyl cobinamide + Adenosine triphosphate > Adenosyl cobinamide phosphate + ADP + Hydrogen ion
4-Amino-2-methyl-5-phosphomethylpyrimidine + Adenosine triphosphate > 2-Methyl-4-amino-5-hydroxymethylpyrimidine diphosphate + ADP
5-(2-Hydroxyethyl)-4-methylthiazole + Adenosine triphosphate + 4-methyl-5-(2-hydroxyethyl)thiazole <> 4-Methyl-5-(2-phosphoethyl)-thiazole + ADP + Hydrogen ion
Adenosine triphosphate + Fructose 1-phosphate > ADP + Fructose 1,6-bisphosphate + Hydrogen ion
Adenosine triphosphate + D-Glucose > ADP + Glucose 6-phosphate + Hydrogen ion
5-Amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate + L-Aspartic acid + Adenosine triphosphate <> SAICAR + ADP + Hydrogen ion + Phosphate
Adenosine triphosphate + Phosphoribosylformylglycineamidine <> ADP + 5-Aminoimidazole ribonucleotide +2 Hydrogen ion + Phosphate
Adenosine triphosphate + Phosphate <> ADP + Pyrophosphate
Adenosine triphosphate + Pyrophosphate <> ADP + Triphosphate
Adenosine triphosphate + 5'-Phosphoribosyl-N-formylglycineamide + L-Glutamine + Water <> ADP + Phosphoribosylformylglycineamidine + L-Glutamate + Hydrogen ion + Phosphate
Adenosine triphosphate + NAD <> ADP + Hydrogen ion + NADP
Adenosine triphosphate + L-Cysteine + L-Glutamate <> ADP + gamma-Glutamylcysteine + Hydrogen ion + Phosphate
Adenosine phosphosulfate + Adenosine triphosphate <> ADP + Hydrogen ion + Phosphoadenosine phosphosulfate
Adenosine triphosphate + L-Glutamine + Water + Uridine triphosphate > ADP + Cytidine triphosphate + L-Glutamate +2 Hydrogen ion + Phosphate
Adenosine triphosphate + L-Fuculose <> ADP + L-Fuculose 1-phosphate + Hydrogen ion
3-Phosphoglycerate + Adenosine triphosphate <> Glyceric acid 1,3-biphosphate + ADP
Adenosine triphosphate + gamma-Glutamylcysteine + Glycine <> ADP + Glutathione + Hydrogen ion + Phosphate
Adenosine triphosphate + Glutathione + Spermidine <> ADP + Glutathionylspermidine + Hydrogen ion + Phosphate
Adenosine triphosphate + Glyceric acid > 2-Phospho-D-glyceric acid + ADP + Hydrogen ion
N-Acetylmannosamine + Adenosine triphosphate > N-Acetyl-D-mannosamine 6-phosphate + ADP + Hydrogen ion
Adenosine triphosphate + Fructoselysine > ADP + Fructoselysine-6-phosphate + Hydrogen ion
Adenosine triphosphate + Oxalacetic acid <> ADP + Carbon dioxide + Phosphoenolpyruvic acid
Adenosine triphosphate + Water + Iron > ADP + Iron + Hydrogen ion + Phosphate
ADP-Glucose > ADP + Glycogen + Hydrogen ion
Adenosine triphosphate + Cadmium + Water > ADP + Hydrogen ion + Phosphate + Cadmium
Arsenite + Adenosine triphosphate + Water > ADP + Hydrogen ion + Phosphate + Arsenite
3-Dehydro-L-gulonate + Adenosine triphosphate > 3-Dehydro-L-gulonate 6-phosphate + ADP + Hydrogen ion
ADP-L-Glycero-D-manno-heptose + heptosyl-kdo2-lipidA > ADP + Hydrogen ion + heptosyl-heptosyl-kdo2-lipidA
ADP-L-Glycero-D-manno-heptose + KDO2-Lipid A > ADP + Hydrogen ion + heptosyl-kdo2-lipidA
ADP-L-Glycero-D-manno-heptose + glucosyl-glucosyl-galactosyl-glucosyl-inner core oligosaccharide lipid A > ADP + core oligosaccharide lipid A + Hydrogen ion
Adenosine triphosphate + Heptosyl-phospho-heptosyl-heptosyl-kdo2-lipidA > ADP + Hydrogen ion + Phospho-heptosyl-phospho-heptosyl-heptosyl-kdo2-lipidA
Adenosine triphosphate + heptosyl-heptosyl-kdo2-lipidA > ADP + Hydrogen ion + Phospho-heptosyl-heptosyl-kdo2-lipidA
ADP-L-Glycero-D-manno-heptose + Phospho-heptosyl-heptosyl-kdo2-lipidA > ADP + Hydrogen ion + Heptosyl-phospho-heptosyl-heptosyl-kdo2-lipidA
Adenosine triphosphate + 2'-Deoxyguanosine 5'-monophosphate <> ADP + dGDP
Adenosine triphosphate + Guanosine monophosphate <> ADP + Guanosine diphosphate
Adenosine triphosphate + Ribose <> ADP + Hydrogen ion + D-Ribose-5-phosphate
Adenosine triphosphate + L-Rhamnulose <> ADP + Hydrogen ion + L-Rhamnulose 1-phosphate
Adenosine triphosphate + D-Sedoheptulose 7-phosphate > ADP + Hydrogen ion + Sedoheptulose 1,7-bisphosphate
Adenosine triphosphate + D-Tagatose 6-phosphate > ADP + Hydrogen ion + D-Tagatose 1,6-bisphosphate
Adenosine triphosphate + Glycerol <> ADP + Glycerol 3-phosphate + Hydrogen ion
N-Acetyl-L-alanine + Adenosine triphosphate + N-Acetylglutamic acid <> N-Acetyl-L-glutamyl 5-phosphate + ADP
Adenosine triphosphate + Pantothenic acid <> D-4'-Phosphopantothenate + ADP + Hydrogen ion
Adenosine triphosphate + Glycine + 5-Phosphoribosylamine <> ADP + Glycineamideribotide + Hydrogen ion + Phosphate
1,2-Diacyl-sn-glycerol (didodecanoyl, n-C12:0) + Adenosine triphosphate > ADP + Hydrogen ion + PA(16:0/16:0)
1,2-Diacyl-sn-glycerol (dihexadec-9-enoyl, n-C16:1) + Adenosine triphosphate > ADP + Hydrogen ion + PA(16:0/16:0)
1,2-Diacyl-sn-glycerol (dihexadecanoyl, n-C16:0) + Adenosine triphosphate > ADP + Hydrogen ion + PA(16:0/16:0)
1,2-Diacyl-sn-glycerol (dioctadec-11-enoyl, n-C18:1) + Adenosine triphosphate > ADP + Hydrogen ion + PA(16:0/16:0)
1,2-Diacyl-sn-glycerol (ditetradec-7-enoyl, n-C14:1) + Adenosine triphosphate > ADP + Hydrogen ion + PA(16:0/16:0)
1,2-Diacyl-sn-glycerol (ditetradecanoyl, n-C14:0) + Adenosine triphosphate > ADP + Hydrogen ion + PA(16:0/16:0)
Adenosine triphosphate + Coenzyme A + Propionic acid > ADP + Phosphate + Propionyl-CoA
D-Allose + Adenosine triphosphate > ADP + D-Allose 6-phosphate + Hydrogen ion
Adenosine triphosphate + Ribose 1,5-bisphosphate <> ADP + Phosphoribosyl pyrophosphate
L-alanine-D-glutamate-meso-2,6-diaminoheptanedioate + Adenosine triphosphate + UDP-N-Acetylmuraminate > ADP + Hydrogen ion + Phosphate + UDP-N-Acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminoheptanedioate
Adenosine triphosphate + Water + Magnesium > ADP + Hydrogen ion + Magnesium + Phosphate
Adenosine triphosphate + Water <> ADP + Phosphate
Adenosine triphosphate + NAD <> ADP + NADP
Diadenosine tetraphosphate + Water <>2 ADP
Adenosine triphosphate + Adenosine monophosphate <>2 ADP
Adenosine triphosphate + Dephospho-CoA <> ADP + Coenzyme A
Adenosine triphosphate + Ammonia + Carbon dioxide <> ADP + Carbamoylphosphate
Adenosine triphosphate + Pyridoxal <> ADP + Pyridoxal 5'-phosphate
Adenosine triphosphate + Pyruvic acid <> ADP + Phosphoenolpyruvic acid
Adenosine triphosphate + L-Glutamate <> ADP + L-Glutamyl 5-phosphate + L-Glutamic acid 5-phosphate
Adenosine triphosphate + L-Glutamate + Ammonia <> ADP + Phosphate + L-Glutamine
RNA + Phosphate <> RNA + ADP
Adenosine triphosphate + gamma-Glutamylcysteine + Glycine <> ADP + Phosphate + Glutathione
Adenosine triphosphate + Adenosine phosphosulfate <> ADP + Phosphoadenosine phosphosulfate
Adenosine triphosphate + Cytidine <> ADP + Cytidine monophosphate
Adenosine triphosphate + Riboflavin <> ADP + Flavin Mononucleotide
Adenosine triphosphate + Uridine triphosphate + Ammonia <> ADP + Phosphate + Cytidine triphosphate
Adenosine triphosphate + Uridine triphosphate + L-Glutamine + Water <> ADP + Phosphate + Cytidine triphosphate + L-Glutamate
2 Adenosine triphosphate + L-Glutamine + Hydrogen carbonate + Water <>2 ADP + Phosphate + L-Glutamate + Carbamoylphosphate
Adenosine triphosphate + IDP <> ADP + Inosine triphosphate
Adenosine triphosphate + Acetyl-CoA + Hydrogen carbonate <> ADP + Phosphate + Malonyl-CoA
Adenosine triphosphate + Glycerol <> ADP + Glycerol 3-phosphate
Adenosine triphosphate + D-Fructose <> ADP + beta-D-Fructose 6-phosphate
Adenosine triphosphate + L-Glutamate + L-Cysteine <> ADP + Phosphate + gamma-Glutamylcysteine
Adenosine triphosphate + Tetrahydrofolic acid + L-Glutamate <> ADP + Phosphate + Tetrahydrofolyl-[Glu](2)
Adenosine triphosphate + Uridine <> ADP + Uridine 5'-monophosphate
Adenosine triphosphate + Dihydroxyacetone <> ADP + Dihydroxyacetone phosphate
Adenosine triphosphate + Ribose <> ADP + D-Ribose-5-phosphate
Adenosine triphosphate + D-Galactose <> ADP + Galactose 1-phosphate
Adenosine triphosphate + Inosine <> ADP + Inosinic acid
Adenosine triphosphate + 2 D-Alanine <> ADP + Phosphate + D-Alanyl-D-alanine
Adenosine triphosphate + N-Acetyl-D-glucosamine <> ADP + N-Acetyl-D-Glucosamine 6-Phosphate
Adenosine triphosphate + Guanosine <> ADP + Guanosine monophosphate
Adenosine triphosphate + Carbamic acid <> ADP + Carbamoylphosphate
Adenosine triphosphate + 3-Phospho-D-glycerate <> ADP + Glyceric acid 1,3-biphosphate + 3-phospho-D-glyceroyl phosphate
Adenosine triphosphate + Glyceric acid <> ADP + 3-Phospho-D-glycerate
Adenosine triphosphate + D-Ribulose 5-phosphate + D-Ribulose 5-phosphate <> ADP + D-Ribulose 1,5-bisphosphate
Adenosine triphosphate + D-Ribulose <> ADP + D-Ribulose 5-phosphate
Adenosine triphosphate + 2-Keto-3-deoxy-D-gluconic acid <> ADP + 2-Keto-3-deoxy-6-phosphogluconic acid
Adenosine triphosphate + Thymidine <> ADP + 5-Thymidylic acid
Adenosine triphosphate + b-D-Glucose <> ADP + beta-D-Glucose 6-phosphate
Adenosine triphosphate + D-Xylulose <> ADP + Xylulose 5-phosphate
Adenosine triphosphate + Gluconic acid <> ADP + 6-Phosphogluconic acid
Adenosine triphosphate + L-Homoserine <> ADP + O-Phosphohomoserine
Adenosine triphosphate + alpha-D-Glucose <> ADP + Glucose 6-phosphate
Adenosine triphosphate + dGDP <> ADP + dGTP
Adenosine triphosphate + L-Threo-2-pentulose <> ADP + L-Xylulose 5-phosphate
Adenosine triphosphate + Pyridoxine <> ADP + Pyridoxine 5'-phosphate
Adenosine triphosphate + Glutathione + Spermidine <> ADP + Phosphate + Glutathionylspermidine
dADP + Thioredoxin disulfide + Water <> Thioredoxin + ADP
Adenosine triphosphate + Fructose 1-phosphate <> ADP + beta-D-Fructose 1,6-bisphosphate
Adenosine triphosphate + 2'-Deoxyguanosine 5'-monophosphate <> ADP + dGDP
Adenosine triphosphate + dUMP <> ADP + dUDP
Adenosine triphosphate + Deoxyuridine <> ADP + dUMP
Adenosine triphosphate + Thiamine <> ADP + Thiamine monophosphate
Adenosine triphosphate + 7,8-Dihydropteroic acid + L-Glutamate <> ADP + Phosphate + Dihydrofolic acid
Adenosine triphosphate + 1,2-Diacyl-sn-glycerol + 1,2-Diacyl-sn-glycerol <> ADP + PA(16:0/16:0)
Adenosine triphosphate + dUDP <> ADP + Deoxyuridine triphosphate
Adenosine triphosphate + Shikimic acid <> ADP + Shikimate 3-phosphate
ADP-Glucose + 1,4-alpha-D-glucan <> ADP + 1,4-alpha-D-glucan
Adenosine triphosphate + L-Ribulose <> ADP + L-Ribulose 5-phosphate
Adenosine triphosphate + Pyridoxamine <> ADP + Pyridoxamine 5'-phosphate
Adenosine triphosphate + N-Acetyl-L-alanine <> ADP + N-Acetyl-L-glutamyl 5-phosphate
Adenosine triphosphate + N-Acetylmannosamine <> ADP + N-Acetyl-D-mannosamine 6-phosphate
Deoxyribose 5-phosphate + ADP <> Deoxyribose + Adenosine triphosphate
Adenosine triphosphate + UDP-N-Acetylmuramoyl-L-alanine + D-Glutamic acid <> ADP + Phosphate + UDP-N-Acetylmuramoyl-L-alanyl-D-glutamate
Adenosine triphosphate + UDP-N-Acetylmuramoyl-L-alanyl-D-glutamate + Meso-2,6-Diaminoheptanedioate <> ADP + Phosphate + UDP-N-Acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminoheptanedioate
Adenosine triphosphate + Pantetheine <> ADP + Pantetheine 4'-phosphate
Adenosine triphosphate + L-Rhamnulose <> ADP + L-Rhamnulose 1-phosphate
Adenosine triphosphate + Pantothenic acid <> ADP + D-4'-Phosphopantothenate
Adenosine triphosphate + 7,8-Diaminononanoate + Carbon dioxide <> ADP + Phosphate + Dethiobiotin
Adenosine triphosphate + UDP-N-Acetylmuraminate + L-Alanine <> ADP + Phosphate + UDP-N-Acetylmuramoyl-L-alanine
D-Tagatose 6-phosphate + Adenosine triphosphate <> D-Tagatose 1,6-bisphosphate + ADP
Adenosine triphosphate + L-Fuculose <> ADP + L-Fuculose 1-phosphate
Adenosine triphosphate + 2-Dehydro-3-deoxy-D-galactonate <> ADP + 2-Dehydro-3-deoxy-D-galactonate-6-phosphate
Adenosine triphosphate + 4-Amino-5-hydroxymethyl-2-methylpyrimidine <> ADP + 4-Amino-2-methyl-5-phosphomethylpyrimidine
Adenosine triphosphate + DIDP <> ADP + 2'-Deoxyinosine triphosphate
Adenosine triphosphate + beta-D-Fructose <> ADP + beta-D-Fructose 6-phosphate
Adenosine triphosphate + 5-Phosphoribosylamine + Glycine <> ADP + Phosphate + Glycineamideribotide
Adenosine triphosphate + Phosphoribosylformylglycineamidine <> ADP + Phosphate + 5-Aminoimidazole ribonucleotide
Adenosine triphosphate + Holo-[carboxylase] + Hydrogen carbonate + Holo-[carboxylase] <> ADP + Phosphate + Carboxybiotin-carboxyl-carrier protein + Carboxybiotin-carboxyl-carrier protein
Adenosine triphosphate + D-Pantothenoyl-L-cysteine <> ADP + 4-Phosphopantothenoylcysteine
Adenosine triphosphate + 5-(2-Hydroxyethyl)-4-methylthiazole <> ADP + 4-Methyl-5-(2-phosphoethyl)-thiazole
Adenosine triphosphate + 5'-Phosphoribosyl-N-formylglycineamide + L-Glutamine + Water <> ADP + Phosphate + Phosphoribosylformylglycineamidine + L-Glutamate
Adenosine triphosphate + UDP-N-Acetylmuramoyl-L-alanyl-gamma-D-glutamyl-L-lysine + D-Alanyl-D-alanine <> ADP + Phosphate + UDP-N-Acetylmuramoyl-L-alanyl-D-glutamyl-L-lysyl-D-alanyl-D-alanine
Adenosine triphosphate + 5-Amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate + L-Aspartic acid <> ADP + Phosphate + SAICAR
Adenosine triphosphate + UDP-N-Acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminoheptanedioate + D-Alanyl-D-alanine <> ADP + Phosphate + UDP-N-Acetylmuramoyl-L-alanyl-D-glutamyl-6-carboxy-L-lysyl-D-alanyl-D-alanine
Adenosine triphosphate + 2,3,2',3'-Tetrakis(3-hydroxytetradecanoyl)-D-glucosaminyl-1,6-beta-D-glucosamine 1-phosphate <> ADP + 2,3,2'3'-Tetrakis(3-hydroxytetradecanoyl)-D-glucosaminyl-1,6-beta-D-glucosamine 1,4'-bisphosphate
Adenosine triphosphate + beta-D-Fructose 6-phosphate <> ADP + beta-D-Fructose 1,6-bisphosphate
Adenosine triphosphate + Adenylylselenate <> ADP + 3'-Phosphoadenylylselenate
Adenosine triphosphate + Nitrogen + 6 Reduced flavodoxin + Water <> Phosphate + ADP +6 Oxidized flavodoxin +2 Ammonia
Adenosyl cobinamide + Adenosine triphosphate <> Adenosyl cobinamide phosphate + ADP
4-(Cytidine 5'-diphospho)-2-C-methyl-D-erythritol + Adenosine triphosphate <> 2-Phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol + ADP
Adenosine triphosphate + D-glycero-beta-D-manno-Heptose 7-phosphate + D-glycero-beta-D-manno-heptose 7-phosphate <> ADP + D-Glycero-D-manno-heptose 1,7-bisphosphate
3-Dehydro-L-gulonate + Adenosine triphosphate <> 3-Dehydro-L-gulonate 6-phosphate + ADP
Adenosine triphosphate + 5-Aminoimidazole ribonucleotide + Hydrogen carbonate <> ADP + Phosphate + 5-Carboxyamino-1-(5-phospho-D-ribosyl)imidazole + 5-carboxyamino-1-(5-phospho-D-ribosyl)imidazole
Adenosine triphosphate + L-Glutamate + Putrescine <> ADP + Phosphate + gamma-Glutamyl-L-putrescine
Fructoselysine + Adenosine triphosphate <> Fructoselysine 6-phosphate + ADP
5-Fluorouridine + Adenosine triphosphate <> 5-Fluorouridine monophosphate + ADP
5-Fluorodeoxyuridine + Adenosine triphosphate <> 5-Fluorodeoxyuridine monophosphate + ADP
Adenosine triphosphate + an aliphatic sulfonate + Water > an aliphatic sulfonate + ADP + Phosphate + Hydrogen ion
D-Ribulose + Adenosine triphosphate > Hydrogen ion + D-Ribulose-1-phosphate + ADP
Hydrogen ion + L-Glutamate + Adenosine triphosphate + NADPH > ADP + L-Glutamic-gamma-semialdehyde + NADP + Phosphate
Ribose-1-phosphate + Adenosine triphosphate > Hydrogen ion + Ribose 1,5-bisphosphate + ADP
Adenosine triphosphate ADP + Phosphate
&alpha;-Kdo-(2->4)-&alpha;-Kdo-(2->6)-lipid IV<SUB>A</SUB> + ADP-L-Glycero-D-manno-heptose Hydrogen ion + heptosyl-Kdo<sub>2</sub>-lipid IV<sub>A</sub> + ADP
an L-1-phosphatidyl-glycerol + Adenosine triphosphate > an L-1-phosphatidylglycerol-phosphate + ADP + Hydrogen ion
&beta;-D-galactofuranose + Adenosine triphosphate + Water > &beta;-D-galactofuranose + ADP + Phosphate + Hydrogen ion
a lipopolysaccharide + Water + Adenosine triphosphate > a lipopolysaccharide + Phosphate + ADP + Hydrogen ion
Hydrogen ion + Water + Adenosine triphosphate <> Hydrogen ion + Phosphate + ADP
Water + a macrolide antibiotic + Adenosine triphosphate > a macrolide antibiotic + Phosphate + ADP
4-(Cytidine 5'-diphospho)-2-C-methyl-D-erythritol + Adenosine triphosphate > Hydrogen ion + 2-Phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol + ADP
Adenosine triphosphate + a [protein]-L-tyrosine > ADP + a protein-L-tyrosine phosphate + Hydrogen ion
Adenosine triphosphate + DNA<sub><i>n</i></sub> ADP + Phosphate
N5-Formyl-H4F + Adenosine triphosphate > 5,10-Methenyltetrahydrofolate + ADP + Phosphate
Ni<SUP>2+</SUP> + Adenosine triphosphate + Water > Ni<SUP>2+</SUP> + ADP + Phosphate + Hydrogen ion
Adenosine triphosphate + Water + an alkylphosphonate > ADP + Phosphate + an alkylphosphonate + Hydrogen ion
Adenosine triphosphate + beta-D-Ribopyranose + Water > ADP + Phosphate + beta-D-Ribopyranose + Hydrogen ion
Adenosine triphosphate + a dipeptide + Water > ADP + Phosphate + a dipeptide + Hydrogen ion
Adenosine triphosphate + Fe(III)dicitrate + Water > ADP + Phosphate + Fe(III)dicitrate + Hydrogen ion
<i>N</i>-acetyl-L-glutamate + Adenosine triphosphate > N-Acetyl-L-glutamyl 5-phosphate + ADP
Ammonia + Carbon dioxide + Adenosine triphosphate < Hydrogen ion + Carbamoylphosphate + ADP
2-Dehydro-3-deoxy-D-galactonate + Adenosine triphosphate > Hydrogen ion + 2-Dehydro-3-deoxy-D-galactonate-6-phosphate + ADP
2-Keto-3-deoxy-D-gluconic acid + Adenosine triphosphate > Hydrogen ion + 2-Keto-3-deoxy-6-phosphogluconic acid + ADP
Dephospho-CoA + Adenosine triphosphate > Hydrogen ion + Coenzyme A + ADP
Carbon dioxide + 7,8-Diaminononanoate + Adenosine triphosphate > Hydrogen ion + Dethiobiotin + Phosphate + ADP
Adenosine triphosphate + a 1,2-diacylglycerol <> Hydrogen ion + PA(16:0/16:0) + ADP
L-Glutamate + 7,8-Dihydropteroic acid + Adenosine triphosphate > Hydrogen ion + Dihydrofolic acid + Phosphate + ADP
a tetrahydrofolate-glutamate + L-Glutamate + Adenosine triphosphate > a tetrahydrofolate-glutamate + Phosphate + ADP
Adenosine triphosphate + Formic acid + Tetrahydrofolic acid > ADP + Phosphate + N10-Formyl-THF
an <i>N</i><sup>10</sup>-formyl-tetrahydrofolate + L-Glutamate + Adenosine triphosphate > an <i>N</i><sup>10</sup>-formyl-tetrahydrofolate + ADP + Phosphate
D-Galactose + Adenosine triphosphate > Hydrogen ion + Galactose 1-phosphate + ADP
b-D-Glucose + Adenosine triphosphate > Hydrogen ion + Glucose 6-phosphate + ADP
a 1,4-&alpha;-D-glucan + ADP-Glucose <> ADP + a 1,4-&alpha;-D-glucan
L-xylulose + Adenosine triphosphate > Hydrogen ion + L-Xylulose 5-phosphate + ADP
D-Mannose + Adenosine triphosphate > Hydrogen ion + Mannose 6-phosphate + ADP
a ribonucleoside diphosphate + Adenosine triphosphate > a ribonucleoside triphosphate + ADP
Adenosine triphosphate + 4-Amino-5-hydroxymethyl-2-methylpyrimidine <> Hydrogen ion + ADP + 4-Amino-2-methyl-5-phosphomethylpyrimidine
Adenosine triphosphate + Pyridoxine > Hydrogen ion + ADP + Pyridoxine 5'-phosphate
Adenosine triphosphate + long chain polyphosphate <> ADP + long chain polyphosphate
Adenosine triphosphate + Hydrogen carbonate + Propionyl-CoA > Hydrogen ion + ADP + Phosphate + (S)-Methylmalonyl-CoA
Adenosine triphosphate + Propionic acid <> ADP + Propanoyl phosphate
Pseudouridine + Adenosine triphosphate > Hydrogen ion + Pseudouridine 5'-phosphate + ADP
Adenosine triphosphate + Pyridoxamine <> Hydrogen ion + ADP + Pyridoxamine 5'-phosphate
D-ribose + Adenosine triphosphate > Hydrogen ion + D-Ribose-5-phosphate + ADP
Nicotinamide riboside + Adenosine triphosphate > Hydrogen ion + Nicotinamide ribotide + ADP
7-carboxy-7-deazaguanine + Ammonia + Adenosine triphosphate > 7-Cyano-7-carbaguanine + ADP + Phosphate + Water
(<i>S</i>)-NADPHX + ADP NADPH + Adenosine monophosphate + Phosphate + Hydrogen ion
Adenosine triphosphate + Hydrogen carbonate + Ammonia > ADP + Phosphate + Carbamoylphosphate + Hydrogen ion
a quaternary amine + Water + Adenosine triphosphate > a quaternary amine + Phosphate + ADP + Hydrogen ion
UDP-N-Acetylmuraminate + L-Ala-D-Glu-meso-A2pm + Adenosine triphosphate > Hydrogen ion + UDP-N-Acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminoheptanedioate + ADP + Phosphate
a 5,10-methylene-tetrahydrofolate + L-Glutamate + Adenosine triphosphate > a 5,10-methylene-tetrahydrofolate + Phosphate + ADP
Adenosine triphosphate + 1-Deoxy-D-xylulose > Hydrogen ion + 1-Deoxy-D-xylulose 5-phosphate + ADP
Putrescine + L-Glutamate + Adenosine triphosphate > Hydrogen ion + gamma-Glutamyl-L-putrescine + ADP + Phosphate
D-Glycero-D-manno-heptose 7-phosphate + Adenosine triphosphate > Hydrogen ion + D-Glycero-D-manno-heptose 1,7-bisphosphate + ADP
1,6-Anhydro-N-acetylmuramate + Adenosine triphosphate + Water > Hydrogen ion + N-Acetylmuramic acid 6-phosphate + ADP
Heptosyl-KDO2-lipid A + ADP-L-Glycero-D-manno-heptose > Hydrogen ion + Heptosyl2-KDO2-lipid A + ADP
Hydrogen ion + KDO2-Lipid A + ADP-L-Glycero-D-manno-heptose > Heptosyl-KDO2-lipid A + ADP
Glucosyl-heptosyl2-KDO2-lipid A + Adenosine triphosphate > Hydrogen ion + Glucosyl-heptosyl2-KDO2-lipid A-phosphate + ADP
Glucosyl-heptosyl2-KDO2-lipid A-phosphate + ADP-L-Glycero-D-manno-heptose > Hydrogen ion + Glucosyl-heptosyl3-KDO2-lipid A-phosphate + ADP
Glucosyl-heptosyl3-KDO2-lipid A-phosphate + Adenosine triphosphate > Hydrogen ion + Glucosyl-heptosyl3-KDO2-lipid A-bisphosphate + ADP
Galactosyl-glucosyl3-heptosyl3-KDO2-lipid A-bisphosphate + ADP-L-Glycero-D-manno-heptose > Hydrogen ion + Lipid A-core + ADP
Hydrogen ion + Adenosine triphosphate + ADP > Diadenosine triphosphate + Pyrophosphate
4-Hydroxy-L-threonine + Adenosine triphosphate > Hydrogen ion + O-Phospho-4-hydroxy-L-threonine + ADP
a [protein] &alpha;-L-glutamate + L-Glutamate + Adenosine triphosphate a [protein] &alpha;-L-glu-&alpha;-L-glu + ADP + Phosphate
(<i>S</i>)-NADHX + ADP > Hydrogen ion + NADH + Adenosine monophosphate + Phosphate
5-Aminoimidazole ribonucleotide + Adenosine triphosphate + Hydrogen carbonate > Hydrogen ion + N5-Carboxyaminoimidazole ribonucleotide + ADP + Phosphate
2,3,2',3'-Tetrakis(3-hydroxytetradecanoyl)-D-glucosaminyl-1,6-beta-D-glucosamine 1-phosphate + Adenosine triphosphate <> Hydrogen ion + lipid IV<sub>A</sub> + ADP
Adenosine triphosphate + 5-(2-Hydroxyethyl)-4-methylthiazole > Hydrogen ion + ADP + 4-Methyl-5-(2-phosphoethyl)-thiazole
Adenosine triphosphate + Arsenate + Water > ADP + Arsenate + Phosphate + Hydrogen ion
Cu<SUP>+</SUP> + Water + Adenosine triphosphate > Cu<SUP>+</SUP> + Phosphate + ADP + Hydrogen ion
Adenosine triphosphate + Water + N-Acetyl-D-glucosamine > N-Acetyl-D-glucosamine + ADP + Phosphate + Hydrogen ion
Adenosine triphosphate + L-Ala-D-Glu-meso-A2pm + Water > L-Ala-D-Glu-meso-A2pm + ADP + Phosphate + Hydrogen ion
(2R,4S)-2-Methyl-2,3,3,4-tetrahydroxytetrahydrofuran + Adenosine triphosphate + Water > (2R,4S)-2-Methyl-2,3,3,4-tetrahydroxytetrahydrofuran + ADP + Phosphate + Hydrogen ion
selenate + Water + Adenosine triphosphate > selenate + ADP + Phosphate + Hydrogen ion
Selenite + Water + Adenosine triphosphate > Selenite + ADP + Phosphate + Hydrogen ion
&alpha;-D-galactofuranose + Adenosine triphosphate + Water > &alpha;-D-galactofuranose + Phosphate + ADP + Hydrogen ion
<i>meso</i>-diaminopimelate + UDP-N-Acetylmuramoyl-L-alanyl-D-glutamate + Adenosine triphosphate > Hydrogen ion + UDP-N-Acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminoheptanedioate + Phosphate + ADP
Adenosine triphosphate + Acetyl-CoA + Carbonic acid > ADP + Inorganic phosphate + Malonyl-CoA
Adenosine triphosphate + biotin-[carboxyl-carrier-protein] + Carbon dioxide > ADP + Inorganic phosphate + carboxy-biotin-[carboxyl-carrier-protein]
Adenosine triphosphate + [isocitrate dehydrogenase (NADP(+))] > ADP + [isocitrate dehydrogenase (NADP(+))] phosphate
Adenosine triphosphate + Water + monosaccharide(Out) > ADP + Inorganic phosphate + monosaccharide(In)
Adenosine triphosphate + D-Allose > ADP + D-Allose 6-phosphate
Adenosine triphosphate + 1,6-Anhydro-N-acetyl-beta-muramate + Water > ADP + N-Acetylmuramic acid 6-phosphate
Adenosine triphosphate + L(or D)-ribulose > ADP + L(or D)-ribulose 5-phosphate
Adenosine triphosphate + protein L-histidine > ADP + protein N-phospho-L-histidine
Adenosine triphosphate + Water + K(+)(Out) > ADP + Inorganic phosphate + K(+)(In)
Adenosine triphosphate + Water + Mg(2+)(Out) > ADP + Inorganic phosphate + Mg(2+)(In)
Adenosine triphosphate + Water + H(+)(In) > ADP + Inorganic phosphate + H(+)(Out)
Adenosine triphosphate + Water + Cd(2+)(In) > ADP + Inorganic phosphate + Cd(2+)(Out)
Adenosine triphosphate + Water + Zn(2+)(In) > ADP + Inorganic phosphate + Zn(2+)(Out)
Adenosine triphosphate + 7,8-Diaminononanoate + Carbon dioxide > ADP + Inorganic phosphate + Dethiobiotin
Adenosine triphosphate + Water + vitamin B12(Out) > ADP + Inorganic phosphate + vitamin B12(In)
2 Adenosine triphosphate + L-Glutamine + Carbonic acid + Water >2 ADP + Inorganic phosphate + L-Glutamate + Carbamoylphosphate
Adenosine triphosphate + Water + heme(In) > ADP + Inorganic phosphate + heme(Out)
Adenosine triphosphate + Water + Cu(+)(In) > ADP + Inorganic phosphate + Cu(+)(Out)
Adenosine triphosphate + Water + sulfate(Out) > ADP + Inorganic phosphate + sulfate(In)
Adenosine triphosphate + Water > ADP + Inorganic phosphate
Adenosine triphosphate + 2 D-Alanine > ADP + Inorganic phosphate + D-Alanyl-D-alanine
Adenosine triphosphate + 2-Dehydro-3-deoxy-D-galactonate > ADP + 2-Dehydro-3-deoxy-D-galactonate 6-phosphate
Adenosine triphosphate + a [protein]-L-tyrosine > ADP + a [protein]-L-tyrosine phosphate
Adenosine triphosphate + Water + Fe(3+)(Out) > ADP + Inorganic phosphate + Fe(3+)(In)
Adenosine triphosphate + Water + iron chelate(Out) > ADP + Inorganic phosphate + iron chelate(In)
Adenosine triphosphate + tetrahydropteroyl-(gamma-Glu)(n) + L-Glutamate > ADP + Inorganic phosphate + tetrahydropteroyl-(gamma-Glu)(n+1)
Adenosine triphosphate + 7,8-Dihydropteroic acid + L-Glutamate > ADP + Inorganic phosphate + Dihydrofolic acid
Adenosine triphosphate + Fructoselysine > ADP + Fructoselysine-6-phosphate
ADP-Glucose + (1,4-alpha-D-glucosyl)(n) > ADP + (1,4-alpha-D-glucosyl)(n+1)
Adenosine triphosphate + D-Glucose > ADP + Glucose 6-phosphate
Adenosine triphosphate + L-Glutamate + Ammonia > ADP + Inorganic phosphate + L-Glutamine
Adenosine triphosphate + Glyceric acid > ADP + 2-Phospho-D-glyceric acid
Adenosine triphosphate + L-Glutamate + L-Cysteine > ADP + Inorganic phosphate + gamma-Glutamylcysteine
Adenosine triphosphate + gamma-Glutamylcysteine + Glycine > ADP + Inorganic phosphate + Glutathione
Glutathione + Spermidine + Adenosine triphosphate > Glutathionylspermidine + ADP + Inorganic phosphate
Adenosine triphosphate + a protein > ADP + a phosphoprotein
Adenosine triphosphate + Fructose 1-phosphate > ADP + Fructose 1,6-bisphosphate
Adenosine triphosphate + Fructose 6-phosphate > ADP + Fructose 1,6-bisphosphate
Adenosine triphosphate + 1,2-diacylglycerol > ADP + 1,2-diacyl-sn-glycerol 3-phosphate
Adenosine triphosphate + D-Ribulose 5-phosphate > ADP + D-Ribulose 1,5-bisphosphate
Adenosine triphosphate + D-Fructose > ADP + Fructose 6-phosphate
Adenosine triphosphate + Water + D-Maltose > ADP + Inorganic phosphate + D-Maltose
Adenosine triphosphate + Water + xenobiotic(In) > ADP + Inorganic phosphate + xenobiotic(Out)
Adenosine triphosphate + Water + Molybdate > ADP + Inorganic phosphate + Molybdate
Adenosine triphosphate + UDP-N-Acetylmuraminate + L-Alanine > ADP + Inorganic phosphate + UDP-N-Acetylmuramoyl-L-alanine
Adenosine triphosphate + UDP-N-Acetylmuramoyl-L-alanyl-gamma-D-glutamyl-L-lysine + D-Alanyl-D-alanine > ADP + Inorganic phosphate + UDP-N-Acetylmuramoyl-L-alanyl-D-glutamyl-L-lysyl-D-alanyl-D-alanine
Adenosine triphosphate + Nicotinamide riboside > ADP + NMN
Adenosine triphosphate + N-Acetylglucosamine > ADP + N-Acetyl-D-Glucosamine 6-Phosphate
Adenosine triphosphate + nucleoside diphosphate > ADP + nucleoside triphosphate
Adenosine triphosphate + Water + Ni(2+)(Out) > ADP + Inorganic phosphate + Ni(2+)(In)
Adenosine triphosphate + Water + Nickel > ADP + Inorganic phosphate + Nickel
ADP + (6S)-6-beta-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide > Adenosine monophosphate + Inorganic phosphate + NADH
Adenosine triphosphate + 3-Phospho-D-glycerate > ADP + 3-phospho-D-glyceroyl phosphate
Adenosine triphosphate + Water + phosphonate(Out) > ADP + Inorganic phosphate + phosphonate(In)
Adenosine triphosphate + Water + polyamine(Out) > ADP + Inorganic phosphate + polyamine(In)
Adenosine triphosphate + (phosphate)(n) > ADP + (phosphate)(n+1)
ADP + [Pyruvate, water dikinase] > Adenosine monophosphate + [pyruvate, water dikinase] phosphate
Adenosine triphosphate + Water + phosphate(Out) > ADP + Inorganic phosphate + phosphate(In)
Adenosine triphosphate + Pseudouridine > ADP + Pseudouridine 5'-phosphate
Adenosine triphosphate + 5-Phosphoribosylamine + Glycine > ADP + Inorganic phosphate + 5'-Phospho-ribosylglycinamide
Adenosine triphosphate + 2-(Formamido)-N(1)-(5-phospho-D-ribosyl)acetamidine > ADP + Inorganic phosphate + 5-Aminoimidazole ribonucleotide
Adenosine triphosphate + 5-Amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate + L-Aspartic acid > ADP + Inorganic phosphate + SAICAR
Adenosine triphosphate + 5-Aminoimidazole ribonucleotide + Carbonic acid > ADP + Inorganic phosphate + 5-carboxyamino-1-(5-phospho-D-ribosyl)imidazole
Formic acid + Adenosine triphosphate + 5'-Phospho-ribosylglycinamide > 5'-Phosphoribosyl-N-formylglycineamide + ADP + Pyrophosphate
Adenosine triphosphate + L-Glutamate + Putrescine > ADP + Inorganic phosphate + gamma-Glutamyl-L-putrescine
Adenosine triphosphate + Uridine triphosphate + Ammonia > ADP + Inorganic phosphate + Cytidine triphosphate
7-Deaza-7-carboxyguanine + Ammonia + Adenosine triphosphate > 7-Cyano-7-carbaguanine + ADP + Inorganic phosphate + Water
Adenosine triphosphate + Water + Taurine > ADP + Inorganic phosphate + Taurine
Adenosine triphosphate + Water + Glycerol 3-phosphate > ADP + Inorganic phosphate + Glycerol 3-phosphate
Adenosine triphosphate + Uridine triphosphate + L-Glutamine + Water + Ammonia <> ADP + Phosphate + Cytidine triphosphate + L-Glutamate
2 Adenosine triphosphate + L-Glutamine + Hydrogen carbonate + Water + Ammonia + Carbamic acid + Carboxyphosphate <>2 ADP + Phosphate + L-Glutamate + Carbamoylphosphate
Adenosine triphosphate + dCMP + Uridine 5'-monophosphate <> ADP + dCDP + Uridine 5'-diphosphate
Adenosine triphosphate + Polyphosphate <> ADP
Adenosine triphosphate + [Isocitrate dehydrogenase (NADP+)] <> ADP + [Isocitrate dehydrogenase (NADP+)] phosphate
ADP + (6S)-6-beta-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide + (6S)-6beta-Hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide phosphate <> Adenosine monophosphate + Phosphate + NADH + NADPH
Adenosine triphosphate + L-Ribulose + D-Ribulose <> ADP + L-Ribulose 5-phosphate + D-Ribulose 5-phosphate
7-Deaza-7-carboxyguanine + Ammonia + Adenosine triphosphate <> 7-Cyano-7-carbaguanine + ADP + Phosphate + Water
Adenosine triphosphate + Protein <> ADP + Phosphoprotein
Adenosine triphosphate + Guanosine triphosphate + Adenosyl cobinamide <> Adenosyl cobinamide phosphate + ADP + Guanosine diphosphate
Adenosine triphosphate + NDP <> ADP + Nucleoside triphosphate
Adenosine triphosphate + N-Acyl-D-mannosamine <> ADP + N-Acyl-D-mannosamine 6-phosphate
<> ADP
Adenosine triphosphate + THF-polyglutamate + L-Glutamate <> ADP + Phosphate
Pyridoxine + Adenosine triphosphate > Pyridoxine 5'-phosphate + Adenosine diphosphate + Hydrogen ion + ADP
Pyridoxal + Adenosine triphosphate > Pyridoxal 5'-phosphate + Adenosine diphosphate + ADP
Pyridoxamine + Adenosine triphosphate > Pyridoxamine 5'-phosphate + Adenosine diphosphate + ADP
Thiamine monophosphate + Adenosine triphosphate + Thiamine monophosphate > Thiamine pyrophosphate + Adenosine diphosphate + ADP
Ammonia + L-Glutamic acid + Adenosine triphosphate + Oxoglutaric acid + L-Glutamate <> Phosphate + L-Glutamine + Adenosine diphosphate + ADP
L-Glutamic acid + Adenosine triphosphate + Ammonium + L-Glutamate > L-Glutamine + Hydrogen ion + Adenosine diphosphate + Phosphate + ADP
7,8-Diaminononanoate + Adenosine triphosphate + Carbon dioxide + 7,8-Diaminononanoate > Dethiobiotin + Adenosine diphosphate + Phosphate + ADP
2 D-Alanine + Adenosine triphosphate > D-Alanyl-D-alanine + Adenosine diphosphate + Phosphate + ADP
UDP-N-acetylmuraminate + Adenosine triphosphate + L-Alanine + UDP-N-Acetylmuraminate + L-Alanine > UDP-N-Acetylmuramoyl-L-alanine + Adenosine diphosphate + Phosphate + ADP
UDP-N-Acetylmuramoyl-L-alanine + Adenosine triphosphate + D-Glutamic acid > Adenosine diphosphate + Phosphate + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate + ADP + UDP-N-Acetylmuramoyl-L-alanyl-D-glutamate
L-Aspartic acid + Adenosine triphosphate + L-Aspartic acid > Adenosine diphosphate + L-Aspartyl-4-phosphate + ADP
N1-(5-phospho-β-D-ribosyl)glycinamide + Adenosine triphosphate + Formic acid > 5'-Phosphoribosyl-N-formylglycinamide + Adenosine diphosphate + Phosphate + Hydrogen ion + 5'-Phosphoribosyl-N-formylglycineamide + ADP
Adenosine triphosphate + Itaconic acid + Coenzyme A > Adenosine diphosphate + Phosphate + Itaconyl-CoA + ADP
Adenosine triphosphate + Pyruvic acid + Hydrogen carbonate > Adenosine diphosphate + Phosphate + Oxalacetic acid + ADP
Succinyl-CoA + Adenosine diphosphate + Phosphate + Succinyl-CoA + ADP > Adenosine triphosphate + Coenzyme A + Succinic acid
Fructose 6-phosphate + Adenosine triphosphate + Fructose 6-phosphate > Fructose 1,6-bisphosphate + Adenosine diphosphate + Hydrogen ion + Fructose 1,6-bisphosphate + ADP
Glyceric acid 1,3-biphosphate + Adenosine diphosphate + Glyceric acid 1,3-biphosphate + ADP > Adenosine triphosphate + 3-Phosphoglyceric acid + 3-Phosphoglycerate
3-Phosphoglyceric acid + Adenosine triphosphate + 3-Phosphoglycerate > 3-phospho-D-glyceroyl phosphate + Adenosine diphosphate + ADP
Phosphoenolpyruvic acid + Adenosine diphosphate + Hydrogen ion + ADP > Adenosine triphosphate + Pyruvic acid
N-Acetylglutamic acid + Adenosine triphosphate + N-Acetylglutamic acid > Adenosine diphosphate + N-Acetyl-L-glutamyl 5-phosphate + ADP
Hydrogen carbonate + Water + L-Glutamine + 2 Adenosine triphosphate >2 Adenosine diphosphate + Phosphate + L-Glutamic acid +2 Hydrogen ion + Carbamoylphosphate +2 ADP + L-Glutamate
Putrescine + Adenosine triphosphate + L-Glutamic acid + L-Glutamate > Phosphate + Adenosine diphosphate + Hydrogen ion + gamma-Glutamyl-L-putrescine + ADP
3-Dehydro-L-gulonate + Adenosine triphosphate > 3-keto-L-gulonate 6-phosphate + Adenosine diphosphate + Hydrogen ion + 3-Keto-L-gulonate 6-phosphate + ADP
L-Threo-2-pentulose + Adenosine triphosphate + L-Threo-2-pentulose > Xylulose 5-phosphate + Adenosine diphosphate + Xylulose 5-phosphate + ADP
L-Glutamic acid + Adenosine triphosphate + L-Glutamate > Adenosine diphosphate + γ-L-glutamyl 5-phosphate + ADP
Glyceric acid + Adenosine triphosphate > Hydrogen ion + Adenosine diphosphate + 2-Phosphoglyceric acid + ADP + 2-Phosphoglyceric acid
Glyceric acid + Adenosine triphosphate > Adenosine diphosphate + Hydrogen ion + 3-Phosphoglyceric acid + ADP + 3-Phosphoglycerate
Acetyl-CoA + Hydrogen carbonate + Adenosine triphosphate > Adenosine diphosphate + Phosphate + Hydrogen ion + Malonyl-CoA + ADP + Malonyl-CoA
L-Glutamine + Adenosine triphosphate + Hydrogen ion + tRNA(Gln) > Adenosine diphosphate + Pyrophosphate + L-Glutaminyl-tRNA(Gln) + ADP
Adenosine phosphosulfate + Adenosine triphosphate > Phosphoadenosine phosphosulfate + Adenosine diphosphate + Hydrogen ion + ADP
Shikimic acid + Adenosine triphosphate > Adenosine diphosphate + Hydrogen ion + shikimate 3-phosphate + ADP + Shikimate 3-phosphate
L-Homoserine + Adenosine triphosphate + L-Homoserine > Adenosine diphosphate + Hydrogen ion + O-Phosphohomoserine + ADP
Oxalacetic acid + Adenosine triphosphate > Adenosine diphosphate + Carbon dioxide + Phosphoenolpyruvic acid + ADP
2-dehydro-3-deoxy-D-galactonate + Adenosine triphosphate + 2-Dehydro-3-deoxy-D-galactonate > Adenosine diphosphate + Hydrogen ion + 2-dehydro-3-deoxy-D-galactonate 6-phosphate + ADP + 2-Dehydro-3-deoxy-D-galactonate 6-phosphate
D-tagatofuranose 6-phosphate + Adenosine triphosphate > Adenosine diphosphate + Hydrogen ion + D-tagatofuranose 1,6-bisphosphate + ADP
Alpha-D-Galactose + Adenosine triphosphate > Adenosine diphosphate + Hydrogen ion + Galactose 1-phosphate + ADP + Galactose 1-phosphate
D-allopyranose + Adenosine triphosphate > Adenosine diphosphate + Hydrogen ion + aldehydo-D-allose 6-phosphate + ADP + aldehydo-D-allose 6-phosphate
L-rhamnulofuranose + Adenosine triphosphate + L-rhamnulofuranose > Adenosine diphosphate + Hydrogen ion + L-rhamnulose 1-phosphate + ADP + L-Rhamnulose 1-phosphate
Adenosine triphosphate + keto-L-rhamnulose > L-fuculose 1-phosphate + Adenosine diphosphate + Hydrogen ion + L-Fuculose 1-phosphate + ADP
D-Ribulose + Adenosine triphosphate + D-Ribulose > Adenosine diphosphate + Hydrogen ion + D-Ribulose-1-phosphate + ADP
Pantothenic acid + Adenosine triphosphate + Pantothenic acid > D-4'-Phosphopantothenate + Adenosine diphosphate + D-4'-Phosphopantothenate + ADP
Pantetheine + Adenosine triphosphate + Pantetheine > Pantetheine 4'-phosphate + Adenosine diphosphate + pantotheine 4'-phosphate + ADP
Adenosine triphosphate + D-Pantothenoyl-L-cysteine > Adenosine diphosphate + 4-Phosphopantothenoylcysteine + ADP
Adenosine triphosphate + Dephospho-CoA > Adenosine diphosphate + Coenzyme A + ADP
Pantothenic acid + Adenosine triphosphate + Pantothenic acid > Adenosine diphosphate + Hydrogen ion + D-4'-Phosphopantothenate + ADP + D-4'-Phosphopantothenate
Dephospho-CoA + Adenosine triphosphate > Hydrogen ion + Adenosine diphosphate + Coenzyme A + ADP
Nicotinic acid + Water + Adenosine triphosphate + Phosphoribosyl pyrophosphate > Phosphate + Adenosine diphosphate + Pyrophosphate + nicotinate beta-D-ribonucleotide + ADP + Nicotinamide ribotide
Nicotinamide riboside + Adenosine triphosphate > Adenosine diphosphate + Hydrogen ion + beta-nicotinamide D-ribonucleotide + ADP + NMN
(2-N,3-O-bis(3-hydroxytetradecanoyl)-beta-D-glucosaminyl)-(1->6)-(2-N,3-O-bis(3-hydroxytetradecanoyl)-beta-D-glucosaminyl phosphate) + Adenosine triphosphate > Adenosine diphosphate + Hydrogen ion + (2-N,3-O-bis(3-Hydroxytetradecanoyl)-4-O-phosphono-beta-D-glucosaminyl)-(1->6)-(2-N,3-O-bis(3-hydroxytetradecanoyl)-beta-D-glucosaminyl phosphate) + ADP
(KDO)2-lipid A + ADP-L-glycero-beta-D-manno-heptose > Hydrogen ion + Adenosine diphosphate + heptosyl-Kdo2-lipid A + ADP + Heptosyl-KDO2-lipid A
heptosyl-Kdo2-lipid A + ADP-L-glycero-beta-D-manno-heptose + Heptosyl-KDO2-lipid A > Adenosine diphosphate + Hydrogen ion + (heptosyl)2-Kdo2-lipid A + ADP
glucosyl-(heptosyl)2-Kdo2-lipid A + Adenosine triphosphate > Adenosine diphosphate + Hydrogen ion + glucosyl-(heptosyl)2-Kdo2-lipid A-phosphate + ADP
glucosyl-(heptosyl)2-Kdo2-lipid A-phosphate + ADP-L-glycero-beta-D-manno-heptose > Adenosine diphosphate + Hydrogen ion + glucosyl-(heptosyl)3-Kdo2-lipid A-phosphate + ADP
glucosyl-(heptosyl)3-Kdo2-lipid A-phosphate + Adenosine triphosphate > Adenosine diphosphate + Hydrogen ion + glucosyl-(heptosyl)3-Kdo2-lipid A-bisphosphate + ADP
galactosyl-(glucosyl)3-(heptosyl)3-Kdo2-lipid A-bisphosphate + ADP-L-glycero-beta-D-manno-heptose > Hydrogen ion + Adenosine diphosphate + Lipid A-core + ADP
L-Glutamic acid + Adenosine triphosphate + L-Cysteine + L-Glutamate > Adenosine diphosphate + Phosphate + Hydrogen ion + gamma-Glutamylcysteine + ADP
gamma-Glutamylcysteine + Glycine + Adenosine triphosphate > Hydrogen ion + Phosphate + Adenosine diphosphate + Glutathione + ADP
2-Dehydro-3-deoxy-D-galactonate + Adenosine triphosphate + 2-Keto-3-deoxy-D-gluconic acid > Hydrogen ion + 2-Keto-3-deoxy-6-phosphogluconic acid + Adenosine diphosphate + ADP
(2R,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran + Adenosine triphosphate + (2R,4S)-2-Methyl-2,3,3,4-tetrahydroxytetrahydrofuran > Adenosine diphosphate + Hydrogen ion + (4S)-4-hydroxy-2,3-pentanedione 5-phosphate + ADP + (4S)-4-hydroxy-2,3-pentanedione 5-phosphate
Beta-D-Glucose + Adenosine triphosphate + b-D-Glucose > Hydrogen ion + Adenosine diphosphate + beta-D-Glucose 6-phosphate + ADP
D-Glucose + Adenosine triphosphate > Hydrogen ion + Adenosine diphosphate + beta-D-Glucose 6-phosphate + ADP
β-D-fructofuranose + Adenosine triphosphate + D-Fructose > Adenosine diphosphate + Hydrogen ion + D-tagatofuranose 6-phosphate + ADP
D-Fructose + Adenosine triphosphate + D-Fructose > D-tagatofuranose 6-phosphate + Adenosine diphosphate + Hydrogen ion + ADP
N-Acetyl-D-glucosamine + Adenosine triphosphate + N-Acetylglucosamine > N-Acetyl-D-Glucosamine 6-Phosphate + Adenosine diphosphate + Hydrogen ion + N-Acetyl-D-Glucosamine 6-Phosphate + ADP
7,8-Dihydropteroic acid + Adenosine triphosphate + L-Glutamic acid + L-Glutamate > Adenosine diphosphate + Phosphate + Hydrogen ion + 7,8-dihydrofolate monoglutamate + ADP + Dihydrofolic acid
Ribose 1,5-bisphosphate + Adenosine triphosphate + Ribose 1,5-bisphosphate > Adenosine diphosphate + Phosphoribosyl pyrophosphate + ADP
5-Phosphoribosylamine + Glycine + Adenosine triphosphate + 5-Phosphoribosylamine > N1-(5-phospho-β-D-ribosyl)glycinamide + Phosphate + Adenosine diphosphate + Hydrogen ion + ADP
5'-Phosphoribosyl-N-formylglycinamide + Water + L-Glutamine + Adenosine triphosphate + 5'-Phosphoribosyl-N-formylglycineamide > 2-(Formamido)-N1-(5-phospho-D-ribosyl)acetamidine + L-Glutamic acid + Phosphate + Adenosine diphosphate + Hydrogen ion + L-Glutamate + ADP
2-(Formamido)-N1-(5-phospho-D-ribosyl)acetamidine + Adenosine triphosphate > 5-Aminoimidazole ribonucleotide + Phosphate + Adenosine diphosphate + Hydrogen ion + ADP
5-Aminoimidazole ribonucleotide + Hydrogen carbonate + Adenosine triphosphate > N5-Carboxyaminoimidazole ribonucleotide + Adenosine diphosphate + Phosphate +2 Hydrogen ion + N5-Carboxyaminoimidazole ribonucleotide + ADP
5-Amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate + L-Aspartic acid + Adenosine triphosphate + L-Aspartic acid > SAICAR + Phosphate + Adenosine diphosphate + Hydrogen ion + SAICAR + ADP
Adenosine monophosphate > Adenosine triphosphate + Adenosine diphosphate + ADP
Guanosine monophosphate + Adenosine triphosphate > Adenosine diphosphate + Guanosine diphosphate + ADP
Guanosine diphosphate + Adenosine triphosphate > Adenosine diphosphate + Guanosine triphosphate + ADP
dGDP + Adenosine triphosphate + dGDP > Adenosine diphosphate + dGTP + ADP
dADP + Adenosine triphosphate + dADP > Adenosine diphosphate + dATP + ADP + dATP
Uridine 5'-diphosphate + Adenosine triphosphate + Uridine 5'-diphosphate > Uridine triphosphate + Adenosine diphosphate + Uridine triphosphate + ADP
dCDP + Adenosine triphosphate > Adenosine diphosphate + dCTP + ADP
dUDP + Adenosine triphosphate + dUDP > Adenosine diphosphate + Deoxyuridine triphosphate + ADP
Adenosine triphosphate + dTDP > Adenosine diphosphate + Thymidine 5'-triphosphate + ADP
Adenosine diphosphate + reduced thioredoxin + ADP <> Water + oxidized thioredoxin + dADP + dADP
Adenosine diphosphate + a reduced NrdH glutaredoxin-like protein + ADP > an oxidized NrdH glutaredoxin-like protein + Water + dADP + dADP
Adenosine diphosphate + Phosphate + 4 Hydrogen ion + ADP <> Water +3 Hydrogen ion + Adenosine triphosphate
β-D-fructofuranose 1-phosphate + Adenosine triphosphate > Adenosine diphosphate + Hydrogen ion + Fructose 1,6-bisphosphate + ADP + Fructose 1,6-bisphosphate
Glycerol + Adenosine triphosphate > Hydrogen ion + Adenosine diphosphate + Glycerol 3-phosphate + ADP
UDP-N-acetyl-α-D-muramate + L-Alanine + Adenosine triphosphate + L-Alanine > Adenosine diphosphate + Phosphate + Hydrogen ion + UDP-N-Acetylmuramoyl-L-alanine + ADP
UDP-N-acetylmuramoyl-L-alanyl-D-glutamate + Meso-2,6-Diaminoheptanedioate + Adenosine triphosphate + UDP-N-Acetylmuramoyl-L-alanyl-D-glutamate > Adenosine diphosphate + Phosphate + Hydrogen ion + UDP-N-Acetylmuramoyl-L-alanyl-D-gamma-glutamyl-meso-2,6-diaminopimelate + ADP
UDP-N-Acetylmuramoyl-L-alanyl-D-gamma-glutamyl-meso-2,6-diaminopimelate + D-Alanyl-D-alanine + Adenosine triphosphate > Adenosine diphosphate + Phosphate + Hydrogen ion + UDP-N-acetyl-α-D-muramoyl-L-alanyl-γ-D-glutamyl-meso-2,6-diaminopimeloyl-D-alanyl-D-alanine + ADP
Adenosine diphosphate + propanoyl phosphate + ADP + Propanoyl phosphate > Adenosine triphosphate + Propionic acid
ADP-Glucose + Amylose <> Amylose + Adenosine diphosphate + ADP
Uridine 5'-monophosphate + Adenosine triphosphate > Adenosine diphosphate + Uridine 5'-diphosphate + ADP + Uridine 5'-diphosphate
Uridine triphosphate + L-Glutamine + Water + Adenosine triphosphate + Uridine triphosphate > Adenosine diphosphate + Hydrogen ion + Phosphate + L-Glutamic acid + Cytidine triphosphate + ADP + L-Glutamate
4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol + Adenosine triphosphate + 4-(Cytidine 5'-diphospho)-2-C-methyl-D-erythritol > Adenosine diphosphate + Hydrogen ion + 2-phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol + ADP + 2-Phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol
a [protein]-(L-serine/L-threonine) + Adenosine triphosphate > a [protein]-(L-serine/L-threonine) phosphate + Adenosine diphosphate + Hydrogen ion + ADP
Adenosyl cobinamide + Adenosine triphosphate + Adenosyl cobinamide > Adenosine diphosphate + Hydrogen ion + adenosylcobinamide phosphate + ADP
Pseudouridine + Adenosine triphosphate + Pseudouridine > Pseudouridine 5'-phosphate + Adenosine diphosphate + Hydrogen ion + ADP
Adenosine triphosphate + Nitrogen + 6 a reduced flavodoxin + Water <> Phosphate + Adenosine diphosphate + an oxidized flavodoxin +2 Ammonia + ADP
7-Deaza-7-carboxyguanine + Adenosine triphosphate + Ammonium > Water + Phosphate + Adenosine diphosphate + Hydrogen ion + 7-Cyano-7-carbaguanine + ADP
L-Arginine + Adenosine triphosphate + Water > L-Arginine + Adenosine diphosphate + Phosphate + Hydrogen ion + ADP
L-Glutamic acid + Adenosine triphosphate + Water + L-Glutamate > Adenosine diphosphate + Phosphate + Hydrogen ion + L-Glutamic acid + ADP
L-Leucine + Adenosine triphosphate + Water > L-Leucine + Adenosine diphosphate + Phosphate + Hydrogen ion + ADP
L-Valine + Adenosine triphosphate + Water + L-Valine > L-Valine + Adenosine diphosphate + Pyrophosphate + Hydrogen ion + ADP
L-Isoleucine + Adenosine triphosphate + Water + L-Isoleucine > L-Isoleucine + Adenosine diphosphate + Phosphate + Hydrogen ion + ADP
L-Glutamine + Adenosine triphosphate + Water > Adenosine diphosphate + Phosphate + Hydrogen ion + L-Glutamine + ADP
L-Aspartic acid + Adenosine triphosphate + Water + L-Aspartic acid > Adenosine diphosphate + Phosphate + Hydrogen ion + L-Aspartic acid + ADP
L-Histidine + Adenosine triphosphate + Water + L-Histidine > Adenosine diphosphate + Phosphate + Hydrogen ion + L-Histidine + ADP
L-Lysine + Adenosine triphosphate + Water + L-Lysine > Adenosine diphosphate + Phosphate + Hydrogen ion + L-Lysine + ADP
L-Methionine + Adenosine triphosphate + Water > Adenosine diphosphate + Phosphate + Hydrogen ion + L-Methionine + ADP
L-Proline + Adenosine triphosphate + Water + L-Proline > L-Proline + Adenosine diphosphate + Phosphate + Hydrogen ion + ADP
D-allopyranose + Adenosine triphosphate + Water > D-allopyranose + Adenosine diphosphate + Hydrogen ion + Phosphate + ADP
Lipid A-core + Adenosine triphosphate + Water > Adenosine diphosphate + Phosphate + Hydrogen ion + Lipid A-core + ADP
(2R,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran + Phosphoribosyl-ATP + Water + (2R,4S)-2-Methyl-2,3,3,4-tetrahydroxytetrahydrofuran + Phosphoribosyl-ATP > (2R,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran + Adenosine diphosphate + Hydrogen ion + Pyrophosphate + ADP
L-Methionine + Adenosine triphosphate + Water > Adenosine diphosphate + Pyrophosphate + Hydrogen ion + L-Methionine + ADP
Ferric enterobactin + Adenosine triphosphate + Water Ferric enterobactin + Adenosine diphosphate + Hydrogen ion + ADP
Adenosine triphosphate + Water + Sulfate + Sulfate > Adenosine diphosphate + Phosphate + Hydrogen ion + Sulfate + ADP
Alkyl Sulfate + Adenosine triphosphate + Water > Adenosine diphosphate + Phosphate + Hydrogen ion + Alkyl Sulfate + ADP
Adenosine triphosphate + Water + Butanesulfonate > Adenosine diphosphate + Phosphate + Hydrogen ion + Butanesulfonate + ADP
Adenosine triphosphate + Water + 3-(N-morpholino)propanesulfonate > Phosphate + Hydrogen ion + Adenosine diphosphate + 3-(N-morpholino)propanesulfonate + ADP
Adenosine triphosphate + Water + ethanesulfonate > Hydrogen ion + Phosphate + Adenosine diphosphate + ethanesulfonate + ADP
Adenosine triphosphate + Water + isethionate > Adenosine diphosphate + Hydrogen ion + Phosphate + isethionate + ADP
Adenosine triphosphate + Water + methanesulfonate + Methanesulfonate > Adenosine diphosphate + Phosphate + Hydrogen ion + methanesulfonate + ADP
Maltotetraose + Adenosine triphosphate + Water > Maltotetraose + Phosphate + Hydrogen ion + Adenosine diphosphate + ADP
Maltotriose + Adenosine triphosphate + Water > Adenosine diphosphate + Phosphate + Hydrogen ion + Maltotriose + ADP
D-Maltose + Adenosine triphosphate + Water > D-Maltose + Phosphate + Hydrogen ion + Adenosine diphosphate + ADP
Adenosine triphosphate + Water + DL-O-Phosphoserine > Hydrogen ion + Phosphate + Adenosine diphosphate + DL-O-Phosphoserine + ADP
Taurine + Adenosine triphosphate + Water > Taurine + Adenosine diphosphate + Phosphate + Hydrogen ion + ADP
Cysteine-S-sulfate + Adenosine triphosphate + Water > Cysteine-S-sulfate + Adenosine diphosphate + Phosphate + Hydrogen ion + ADP
Homocarnosine + Adenosine triphosphate + Water + Homocarnosine > Homocarnosine + Adenosine diphosphate + Phosphate + Hydrogen ion + ADP
Cobinamide + Adenosine triphosphate + Water + Cobinamide > Adenosine diphosphate + Phosphate + Hydrogen ion + Cobinamide + ADP
Cyanocobalamin + Adenosine triphosphate + Water + Cyanocobalamin > Adenosine diphosphate + Phosphate + Hydrogen ion + Cyanocobalamin + ADP
Adenosine triphosphate + Water + 1,6-Anhydro-N-acetylmuramate <> Adenosine diphosphate + MurNAc-6-P + ADP
More...

Pathways:
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-004i-0301900000-f65eba52a00479514d8eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-000i-0900000000-cdad0c415295c75e0b67View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-000i-1900000000-1f27fdf6dbd77cbe927dView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-004i-0102981000-79c6771fae3255f75825View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-004i-0209000000-24c7ad0d0646786963beView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-004i-0009000000-d266bbe08f0bcb8102b4View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-001i-0000090000-8a788ef5a2c7ccc534e1View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Negativesplash10-004i-6900600000-fe2194fd2a27df917e5bView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, NegativeNot Available
1D NMR1H NMR SpectrumNot Available
2D NMR[1H,1H] 2D NMR SpectrumNot Available
2D NMR[1H,13C] 2D NMR SpectrumNot Available
References
References:
  • Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R., Van Dien, S. J., Rabinowitz, J. D. (2009). "Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli." Nat Chem Biol 5:593-599. Pubmed: 19561621
  • Buchholz, A., Takors, R., Wandrey, C. (2001). "Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques." Anal Biochem 295:129-137. Pubmed: 11488613
  • Corsonello A, Malara A, De Domenico D, Damiano MC, Mirone S, Loddo S, Ientile R, Corica F: Effects of magnesium sulphate on leptin-dependent platelet aggregation: an ex vivo study. Magnes Res. 2005 Mar;18(1):7-11. Pubmed: 15945611
  • Cuisset T, Frere C, Quilici J, Barbou F, Morange PE, Hovasse T, Bonnet JL, Alessi MC: High post-treatment platelet reactivity identified low-responders to dual antiplatelet therapy at increased risk of recurrent cardiovascular events after stenting for acute coronary syndrome. J Thromb Haemost. 2006 Mar;4(3):542-9. Epub 2005 Dec 22. Pubmed: 16371119
  • Cuisset T, Frere C, Quilici J, Morange PE, Nait-Saidi L, Carvajal J, Lehmann A, Lambert M, Bonnet JL, Alessi MC: Benefit of a 600-mg loading dose of clopidogrel on platelet reactivity and clinical outcomes in patients with non-ST-segment elevation acute coronary syndrome undergoing coronary stenting. J Am Coll Cardiol. 2006 Oct 3;48(7):1339-45. Epub 2006 Sep 12. Pubmed: 17010792
  • Hua J, Suguro S, Iwabuchi K, Tsutsumi-Ishii Y, Sakamoto K, Nagaoka I: Glucosamine, a naturally occurring amino monosaccharide, suppresses the ADP-mediated platelet activation in humans. Inflamm Res. 2004 Dec;53(12):680-8. Pubmed: 15654516
  • Imura Y, Stassen JM, Bunting S, Stockmans F, Collen D: Antithrombotic properties of L-cysteine, N-(mercaptoacetyl)-D-Tyr-Arg-Gly-Asp-sulfoxide (G4120) in a hamster platelet-rich femoral vein thrombosis model. Blood. 1992 Sep 1;80(5):1247-53. Pubmed: 1515641
  • Ishii, N., Nakahigashi, K., Baba, T., Robert, M., Soga, T., Kanai, A., Hirasawa, T., Naba, M., Hirai, K., Hoque, A., Ho, P. Y., Kakazu, Y., Sugawara, K., Igarashi, S., Harada, S., Masuda, T., Sugiyama, N., Togashi, T., Hasegawa, M., Takai, Y., Yugi, K., Arakawa, K., Iwata, N., Toya, Y., Nakayama, Y., Nishioka, T., Shimizu, K., Mori, H., Tomita, M. (2007). "Multiple high-throughput analyses monitor the response of E. coli to perturbations." Science 316:593-597. Pubmed: 17379776
  • Ji Q, Ghaly M, Hjemdahl P, Tornvall P, Li N: Contrast medium attenuates platelet activation and platelet-leukocyte cross-talk. Thromb Haemost. 2005 May;93(5):922-6. Pubmed: 15886810
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Morshedi M, Oehninger S, Blackmore P, Bocca S, Coddington C, Hodgen G: Investigation of some biochemical and functional effects of cryopreservation of human spermatozoa using an automated freezing-quick-thawing method. Int J Androl. 1995 Dec;18(6):279-86. Pubmed: 8719843
  • Nakayama Y, Kinoshita A, Tomita M: Dynamic simulation of red blood cell metabolism and its application to the analysis of a pathological condition. Theor Biol Med Model. 2005 May 9;2(1):18. Pubmed: 15882454
  • Quinton TM, Kim S, Jin J, Kunapuli SP: Lipid rafts are required in Galpha(i) signaling downstream of the P2Y12 receptor during ADP-mediated platelet activation. J Thromb Haemost. 2005 May;3(5):1036-41. Pubmed: 15869601
  • Saxena R, Gupta M, Gupta S, Kannan M, Ahmed RP, Choudhry VP: Inherited heterogenous defect in platelet aggregation selectively with ADP and epinephrine--a series of 25 cases. Indian J Pathol Microbiol. 2005 Jul;48(3):345-8. Pubmed: 16761747
  • Shabanova EY, Mindukshev IV, Malakhovskaya EA, Vivulanets EV, Petrishchev NN, Krivchenko AI: Cooperative type of platelet hypersensitivity to ADP. Bull Exp Biol Med. 2005 Sep;140(3):282-4. Pubmed: 16307036
  • Smith SM, Judge HM, Peters G, Storey RF: Multiple antiplatelet effects of clopidogrel are not modulated by statin type in patients undergoing percutaneous coronary intervention. Platelets. 2004 Dec;15(8):465-74. Pubmed: 15763887
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Vigue C, Vigue L, Huszar G: Adenosine triphosphate (ATP) concentrations and ATP/adenosine diphosphate ratios in human sperm of normospermic, oligospermic, and asthenospermic specimens and in their swim-up fractions: lack of correlation between ATP parameters and sperm creatine kinase concentrations. J Androl. 1992 Jul-Aug;13(4):305-11. Pubmed: 1399831
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
Synthesis Reference: Yamagata, Yukio. Prebiotic formation of ADP and ATP from AMP, calcium phosphates and cyanate in aqueous solution. Origins of Life and Evolution of the Biosphere (1999), 29(5), 511-520.
Material Safety Data Sheet (MSDS) Download (PDF)
External Links:
ResourceLink
CHEBI ID32889
HMDB IDHMDB01341
Pubchem Compound ID6022
Kegg IDC00008
ChemSpider ID5800
WikipediaADP
BioCyc IDADP
EcoCyc IDADP
Ligand ExpoADP

Enzymes

General function:
Involved in oxidation-reduction process
Specific function:
Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R1 contains the binding sites for both substrates and allosteric effectors and carries out the actual reduction of the ribonucleotide. It also provides redox- active cysteines
Gene Name:
nrdA
Locus Tag:
PA1156
Molecular weight:
107.1 kDa
Reactions
2'-deoxyribonucleoside diphosphate + thioredoxin disulfide + H(2)O = ribonucleoside diphosphate + thioredoxin.
General function:
Involved in ATP binding
Specific function:
Catalyzes the ATP-dependent phosphorylation of L- homoserine to L-homoserine phosphate. Is also able to phosphorylate the hydroxy group on gamma-carbon of L-homoserine analogs when the functional group at the alpha-position is a carboxyl, an ester, or even a hydroxymethyl group. Neither L- threonine nor L-serine are substrates of the enzyme
Gene Name:
thrB
Locus Tag:
PA5495
Molecular weight:
35.4 kDa
Reactions
ATP + L-homoserine = ADP + O-phospho-L-homoserine.
General function:
Involved in nucleotide binding
Specific function:
ATP + L-glutamine + tRNA(Gln) = AMP + diphosphate + L-glutaminyl-tRNA(Gln)
Gene Name:
glnS
Locus Tag:
PA1794
Molecular weight:
62.9 kDa
Reactions
ATP + L-glutamine + tRNA(Gln) = AMP + diphosphate + L-glutaminyl-tRNA(Gln).
General function:
Involved in ATP binding
Specific function:
2 ATP + L-glutamine + HCO(3)(-) + H(2)O = 2 ADP + phosphate + L-glutamate + carbamoyl phosphate
Gene Name:
carB
Locus Tag:
PA4756
Molecular weight:
117.3 kDa
Reactions
2 ATP + L-glutamine + HCO(3)(-) + H(2)O = 2 ADP + phosphate + L-glutamate + carbamoyl phosphate.
General function:
Involved in potassium-transporting ATPase activity
Specific function:
One of the components of the high-affinity ATP-driven potassium transport (or KDP) system, which catalyzes the hydrolysis of ATP coupled with the exchange of hydrogen and potassium ions
Gene Name:
kdpA
Locus Tag:
PA1633
Molecular weight:
59.9 kDa
Reactions
ATP + H(2)O + K(+)(Out) = ADP + phosphate + K(+)(In).
General function:
Involved in nucleotide binding
Specific function:
One of the components of the high-affinity ATP-driven potassium transport (or KDP) system, which catalyzes the hydrolysis of ATP coupled with the exchange of hydrogen and potassium ions
Gene Name:
kdpB
Locus Tag:
PA1634
Molecular weight:
73 kDa
Reactions
ATP + H(2)O + K(+)(Out) = ADP + phosphate + K(+)(In).
General function:
Involved in potassium-transporting ATPase activity
Specific function:
One of the components of the high-affinity ATP-driven potassium transport (or KDP) system, which catalyzes the hydrolysis of ATP coupled with the exchange of hydrogen and potassium ions. The C subunit may be involved in assembly of the KDP complex
Gene Name:
kdpC
Locus Tag:
PA1635
Molecular weight:
19.3 kDa
Reactions
ATP + H(2)O + K(+)(Out) = ADP + phosphate + K(+)(In).
General function:
Involved in ATP binding
Specific function:
ATP + gamma-L-glutamyl-L-cysteine + glycine = ADP + phosphate + glutathione
Gene Name:
gshB
Locus Tag:
PA0407
Molecular weight:
35.7 kDa
Reactions
ATP + gamma-L-glutamyl-L-cysteine + glycine = ADP + phosphate + glutathione.
General function:
Involved in nucleotide binding
Specific function:
Part of the ABC transporter complex RbsABCD involved in ribose import. Responsible for energy coupling to the transport system
Gene Name:
rbsA
Locus Tag:
PA1947
Molecular weight:
55.8 kDa
Reactions
ATP + H(2)O + monosaccharide(Out) = ADP + phosphate + monosaccharide(In).
General function:
Involved in RNA binding
Specific function:
Involved in mRNA degradation. Hydrolyzes single-stranded polyribonucleotides processively in the 3'- to 5'-direction
Gene Name:
pnp
Locus Tag:
PA4740
Molecular weight:
75.4 kDa
Reactions
RNA(n+1) + phosphate = RNA(n) + a nucleoside diphosphate.
General function:
Involved in bis(5'-nucleosyl)-tetraphosphatase (symmetrical) activity
Specific function:
Hydrolyzes diadenosine 5',5'''-P1,P4-tetraphosphate to yield ADP
Gene Name:
apaH
Locus Tag:
PA0590
Molecular weight:
32 kDa
Reactions
P(1),P(4)-bis(5'-adenosyl) tetraphosphate + H(2)O = 2 ADP.
General function:
Involved in nucleotide binding
Specific function:
Part of the binding-protein-dependent transport system for histidine. Probably responsible for energy coupling to the transport system
Gene Name:
hisP
Locus Tag:
PA2926
Molecular weight:
28.5 kDa
General function:
Involved in ATP binding
Specific function:
Cell wall formation
Gene Name:
ddlB
Locus Tag:
PA4410
Molecular weight:
34.4 kDa
Reactions
ATP + 2 D-alanine = ADP + phosphate + D-alanyl-D-alanine.
General function:
Involved in catalytic activity
Specific function:
ATP + 2-(formamido)-N(1)-(5-phospho-D- ribosyl)acetamidine = ADP + phosphate + 5-amino-1-(5-phospho-D- ribosyl)imidazole
Gene Name:
purM
Locus Tag:
PA0945
Molecular weight:
37.1 kDa
Reactions
ATP + 2-(formamido)-N(1)-(5-phospho-D-ribosyl)acetamidine = ADP + phosphate + 5-amino-1-(5-phospho-D-ribosyl)imidazole.
General function:
Involved in tetrahydrofolylpolyglutamate synthase activity
Specific function:
Conversion of folates to polyglutamate derivatives
Gene Name:
folC
Locus Tag:
PA3111
Molecular weight:
46.5 kDa
Reactions
ATP + tetrahydropteroyl-(gamma-Glu)(n) + L-glutamate = ADP + phosphate + tetrahydropteroyl-(gamma-Glu)(n+1).
ATP + 7,8-dihydropteroate + L-glutamate = ADP + phosphate + 7,8-dihydropteroylglutamate.
General function:
Involved in amino acid binding
Specific function:
ATP + L-aspartate = ADP + 4-phospho-L- aspartate
Gene Name:
lysC
Locus Tag:
PA0904
Molecular weight:
44.4 kDa
Reactions
ATP + L-aspartate = ADP + 4-phospho-L-aspartate.
General function:
Involved in phosphoribosylaminoimidazole carboxylase activity
Specific function:
Possesses an ATPase activity that is dependent on the presence of AIR (aminoimidazole ribonucleotide). The association of purK and purE produces an enzyme complex capable of converting AIR to CAIR efficiently under physiological condition
Gene Name:
purK
Locus Tag:
PA5425
Molecular weight:
38.5 kDa
Reactions
ATP + 5-amino-1-(5-phospho-D-ribosyl)imidazole + HCO(3)(-) = ADP + phosphate + 5-carboxyamino-1-(5-phospho-D-ribosyl)imidazole.
General function:
Involved in kinase activity
Specific function:
Involved in the activation of acetate to acetyl CoA and the secretion of acetate. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically
Gene Name:
ackA
Locus Tag:
PA0836
Molecular weight:
42.4 kDa
Reactions
ATP + acetate = ADP + acetyl phosphate.
ATP + propanoate = ADP + propanoyl phosphate.
General function:
Involved in acetylglutamate kinase activity
Specific function:
ATP + N-acetyl-L-glutamate = ADP + N-acetyl-L- glutamate 5-phosphate
Gene Name:
argB
Locus Tag:
PA5323
Molecular weight:
31.8 kDa
Reactions
ATP + N-acetyl-L-glutamate = ADP + N-acetyl-L-glutamate 5-phosphate.
General function:
Involved in shikimate kinase activity
Specific function:
Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate
Gene Name:
aroK
Locus Tag:
PA5039
Molecular weight:
19.2 kDa
Reactions
ATP + shikimate = ADP + shikimate 3-phosphate.
General function:
Involved in hydrogen ion transporting ATP synthase activity, rotational mechanism
Specific function:
Produces ATP from ADP in the presence of a proton gradient across the membrane
Gene Name:
atpC
Locus Tag:
PA5553
Molecular weight:
14.7 kDa
General function:
Involved in glutamine catabolic process
Specific function:
2 ATP + L-glutamine + HCO(3)(-) + H(2)O = 2 ADP + phosphate + L-glutamate + carbamoyl phosphate
Gene Name:
carA
Locus Tag:
PA4758
Molecular weight:
40.8 kDa
Reactions
2 ATP + L-glutamine + HCO(3)(-) + H(2)O = 2 ADP + phosphate + L-glutamate + carbamoyl phosphate.
General function:
Involved in phosphotransferase activity, alcohol group as acceptor
Specific function:
Key enzyme in the regulation of glycerol uptake and metabolism
Gene Name:
glpK
Locus Tag:
PA3582
Molecular weight:
56 kDa
Reactions
ATP + glycerol = ADP + sn-glycerol 3-phosphate.
General function:
Involved in cytidylate kinase activity
Specific function:
ATP, dATP, and GTP are equally effective as phosphate donors. CMP and dCMP are the best phosphate acceptors
Gene Name:
cmk
Locus Tag:
PA3163
Molecular weight:
24.6 kDa
Reactions
ATP + (d)CMP = ADP + (d)CDP.
General function:
Involved in dephospho-CoA kinase activity
Specific function:
Catalyzes the phosphorylation of the 3'-hydroxyl group of dephosphocoenzyme A to form coenzyme A
Gene Name:
coaE
Locus Tag:
PA4529
Molecular weight:
22.8 kDa
Reactions
ATP + 3'-dephospho-CoA = ADP + CoA.
General function:
Involved in adenylylsulfate kinase activity
Specific function:
Catalyzes the synthesis of activated sulfate
Gene Name:
cysC
Locus Tag:
PA1393
Molecular weight:
22.1 kDa
Reactions
ATP + adenylyl sulfate = ADP + 3'-phosphoadenylyl sulfate.
General function:
Involved in ATP binding
Specific function:
Cell wall formation
Gene Name:
ddlA
Locus Tag:
PA4201
Molecular weight:
36.5 kDa
Reactions
ATP + 2 D-alanine = ADP + phosphate + D-alanyl-D-alanine.
General function:
Involved in glucokinase activity
Specific function:
Not highly important in Pseudomonas aeruginosa as glucose is transported into the cell by the PTS system already as glucose 6-phosphate
Gene Name:
glk
Locus Tag:
PA3193
Molecular weight:
34.6 kDa
Reactions
ATP + D-glucose = ADP + D-glucose 6-phosphate.
General function:
Involved in glutamate-cysteine ligase activity
Specific function:
ATP + L-glutamate + L-cysteine = ADP + phosphate + gamma-L-glutamyl-L-cysteine
Gene Name:
gshA
Locus Tag:
PA5203
Molecular weight:
59.2 kDa
Reactions
ATP + L-glutamate + L-cysteine = ADP + phosphate + gamma-L-glutamyl-L-cysteine.
General function:
Involved in thymidylate kinase activity
Specific function:
Catalyzes the reversible phosphorylation of deoxythymidine monophosphate (dTMP) to deoxythymidine diphosphate (dTDP), using ATP as its preferred phosphoryl donor. Situated at the junction of both de novo and salvage pathways of deoxythymidine triphosphate (dTTP) synthesis, is essential for DNA synthesis and cellular growth
Gene Name:
tmk
Locus Tag:
PA2962
Molecular weight:
23.1 kDa
Reactions
ATP + dTMP = ADP + dTDP.
General function:
Involved in nucleoside diphosphate kinase activity
Specific function:
Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate
Gene Name:
ndk
Locus Tag:
PA3807
Molecular weight:
15.6 kDa
Reactions
ATP + nucleoside diphosphate = ADP + nucleoside triphosphate.
General function:
Involved in phosphoglycerate kinase activity
Specific function:
ATP + 3-phospho-D-glycerate = ADP + 3-phospho- D-glyceroyl phosphate
Gene Name:
pgk
Locus Tag:
PA0552
Molecular weight:
40.4 kDa
Reactions
ATP + 3-phospho-D-glycerate = ADP + 3-phospho-D-glyceroyl phosphate.
General function:
Involved in catalytic activity
Specific function:
Catalyzes the reversible transfer of the terminal phosphate of ATP to form a long-chain polyphosphate (polyP). Can form linear polymers of orthophosphate with chain lengths up to 1000 or more. Can also act in the reverse direction to form ATP in the presence of excess ADP. Can also use GTP instead of ATP; but the efficiency of GTP is 5% that of ATP
Gene Name:
ppk
Locus Tag:
PA5242
Molecular weight:
83.2 kDa
Reactions
ATP + (phosphate)(n) = ADP + (phosphate)(n+1).
General function:
Involved in cellular amino acid biosynthetic process
Specific function:
Catalyzes the transfer of a phosphate group to glutamate to form glutamate 5-phosphate which rapidly cyclizes to 5- oxoproline
Gene Name:
proB
Locus Tag:
PA4565
Molecular weight:
39.8 kDa
Reactions
ATP + L-glutamate = ADP + L-glutamate 5-phosphate.
General function:
Involved in ATP binding
Specific function:
ATP + 5-amino-1-(5-phospho-D- ribosyl)imidazole-4-carboxylate + L-aspartate = ADP + phosphate + (S)-2-(5-amino-1-(5-phospho-D-ribosyl)imidazole-4- carboxamido)succinate
Gene Name:
purC
Locus Tag:
PA1013
Molecular weight:
26.8 kDa
Reactions
ATP + 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate + L-aspartate = ADP + phosphate + (S)-2-(5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido)succinate.
General function:
Involved in CTP synthase activity
Specific function:
Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen
Gene Name:
pyrG
Locus Tag:
PA3637
Molecular weight:
59.6 kDa
Reactions
ATP + UTP + NH(3) = ADP + phosphate + CTP.
General function:
Involved in cellular amino acid biosynthetic process
Specific function:
Catalyzes the reversible phosphorylation of UMP to UDP, with ATP as the most efficient phosphate donor
Gene Name:
pyrH
Locus Tag:
PA3654
Molecular weight:
26.3 kDa
Reactions
ATP + UMP = ADP + UDP.
General function:
Involved in ATP binding
Specific function:
ATP + succinate + CoA = ADP + phosphate + succinyl-CoA
Gene Name:
sucC
Locus Tag:
PA1588
Molecular weight:
41.5 kDa
Reactions
ATP + succinate + CoA = ADP + phosphate + succinyl-CoA.
General function:
Involved in glutamate-ammonia ligase activity
Specific function:
ATP + L-glutamate + NH(3) = ADP + phosphate + L-glutamine
Gene Name:
glnA
Locus Tag:
PA5119
Molecular weight:
51.9 kDa
Reactions
ATP + L-glutamate + NH(3) = ADP + phosphate + L-glutamine.
General function:
Involved in phosphotransferase activity, alcohol group as acceptor
Specific function:
ATP + D-ribose = ADP + D-ribose 5-phosphate
Gene Name:
rbsK
Locus Tag:
PA1950
Molecular weight:
31.8 kDa
Reactions
ATP + D-ribose = ADP + D-ribose 5-phosphate.
General function:
Involved in acetyl-CoA carboxylase activity
Specific function:
Controls translation of mRNA for both itself and the alpha-subunit (accA) by binding to a probable hairpin in the 5' of the mRNA. Binding to mRNA inhibits translation; this is partially relieved by acetyl-CoA. Increasing amounts of mRNA also inhibit enzyme activity
Gene Name:
accD
Locus Tag:
PA3112
Molecular weight:
31.8 kDa
Reactions
ATP + acetyl-CoA + HCO(3)(-) = ADP + phosphate + malonyl-CoA.
General function:
Involved in nucleotide binding
Specific function:
Part of the ABC transporter complex pstSACB involved in phosphate import. Responsible for energy coupling to the transport system
Gene Name:
pstB
Locus Tag:
PA5366
Molecular weight:
31 kDa
Reactions
ATP + H(2)O + phosphate(Out) = ADP + phosphate + phosphate(In).
General function:
Involved in hydrogen ion transmembrane transporter activity
Specific function:
Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane
Gene Name:
atpB
Locus Tag:
PA5560
Molecular weight:
31.9 kDa
General function:
Involved in hydrogen ion transmembrane transporter activity
Specific function:
Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0)
Gene Name:
atpF
Locus Tag:
PA5558
Molecular weight:
16.9 kDa
General function:
Involved in hydrogen ion transporting ATP synthase activity, rotational mechanism
Specific function:
This protein is part of the stalk that links CF(0) to CF(1). It either transmits conformational changes from CF(0) to CF(1) or is implicated in proton conduction
Gene Name:
atpH
Locus Tag:
PA5557
Molecular weight:
19.3 kDa
General function:
Involved in hydrogen ion transporting ATP synthase activity, rotational mechanism
Specific function:
Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex
Gene Name:
atpG
Locus Tag:
PA5555
Molecular weight:
31.6 kDa
General function:
Involved in ATP binding
Specific function:
Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit
Gene Name:
atpA
Locus Tag:
PA5556
Molecular weight:
55.4 kDa
Reactions
ATP + H(2)O + H(+)(In) = ADP + phosphate + H(+)(Out).
General function:
Involved in nucleotide binding
Specific function:
Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits
Gene Name:
atpD
Locus Tag:
PA5554
Molecular weight:
49.5 kDa
Reactions
ATP + H(2)O + H(+)(In) = ADP + phosphate + H(+)(Out).
General function:
Involved in hydrolase activity, acting on acid anhydrides, catalyzing transmembrane movement of substances
Specific function:
Mediates magnesium influx to the cytosol
Gene Name:
mgtA
Locus Tag:
PA4825
Molecular weight:
100.1 kDa
Reactions
ATP + H(2)O + Mg(2+)(Out) = ADP + phosphate + Mg(2+)(In).
General function:
Involved in acetyl-CoA carboxylase activity
Specific function:
Component of the acetyl coenzyme A carboxylase (ACC) complex. First, biotin carboxylase catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the carboxyltransferase to acetyl-CoA to form malonyl-CoA
Gene Name:
accA
Locus Tag:
PA3639
Molecular weight:
34.9 kDa
Reactions
ATP + acetyl-CoA + HCO(3)(-) = ADP + phosphate + malonyl-CoA.
General function:
Involved in acetyl-CoA carboxylase activity
Specific function:
This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA
Gene Name:
accB
Locus Tag:
PA4847
Molecular weight:
16.5 kDa
General function:
Involved in diacylglycerol kinase activity
Specific function:
Recycling of diacylglycerol produced during the turnover of membrane phospholipid
Gene Name:
dgkA
Locus Tag:
PA3603
Molecular weight:
13.1 kDa
Reactions
ATP + 1,2-diacylglycerol = ADP + 1,2-diacyl-sn-glycerol 3-phosphate.
General function:
Involved in magnesium ion binding
Specific function:
ATP + pyruvate = ADP + phosphoenolpyruvate
Gene Name:
pykF
Locus Tag:
PA1498
Molecular weight:
51.5 kDa
Reactions
ATP + pyruvate = ADP + phosphoenolpyruvate.
General function:
Involved in nucleotide binding
Specific function:
ATP-dependent phosphorylation of adenosylcobinamide and adds GMP to adenosylcobinamide phosphate
Gene Name:
cobU
Locus Tag:
PA1279
Molecular weight:
36.5 kDa
Reactions
ATP or GTP + adenosylcobinamide = adenosylcobinamide phosphate + ADP or GDP.
GTP + adenosylcobinamide phosphate = diphosphate + adenosylcobinamide-GDP.
General function:
Involved in 1-phosphofructokinase activity
Specific function:
ATP + D-fructose 1-phosphate = ADP + D- fructose 1,6-bisphosphate
Gene Name:
fruK
Locus Tag:
PA3561
Molecular weight:
33.4 kDa
Reactions
ATP + D-fructose 1-phosphate = ADP + D-fructose 1,6-bisphosphate.
General function:
Involved in nucleoside-triphosphate diphosphatase activity
Specific function:
Specific function unknown
Gene Name:
mazG
Locus Tag:
PA0935
Molecular weight:
31.2 kDa
Reactions
ATP + H(2)O = AMP + diphosphate.
General function:
Involved in FMN adenylyltransferase activity
Specific function:
ATP + riboflavin = ADP + FMN
Gene Name:
ribF
Locus Tag:
PA4561
Molecular weight:
34.3 kDa
Reactions
ATP + riboflavin = ADP + FMN.
ATP + FMN = diphosphate + FAD.
General function:
Involved in catalytic activity
Specific function:
ATP + succinate + CoA = ADP + phosphate + succinyl-CoA
Gene Name:
sucD
Locus Tag:
PA1589
Molecular weight:
30.3 kDa
Reactions
ATP + succinate + CoA = ADP + phosphate + succinyl-CoA.
General function:
Involved in catalytic activity
Specific function:
ATP + thiamine phosphate = ADP + thiamine diphosphate
Gene Name:
thiL
Locus Tag:
PA4051
Molecular weight:
32.9 kDa
Reactions
ATP + thiamine phosphate = ADP + thiamine diphosphate.
General function:
Involved in nucleotide binding
Specific function:
Part of the ABC transporter complex UgpABCE involved in sn-glycerol-3-phosphate import. Responsible for energy coupling to the transport system (Probable). Can also transport glycerophosphoryl diesters
Gene Name:
ugpC
Locus Tag:
PA3187
Molecular weight:
42.2 kDa
Reactions
ATP + H(2)O + glycerol-3-phosphate(Out) = ADP + phosphate + glycerol-3-phosphate(In).
General function:
Involved in [isocitrate dehydrogenase (NADP+)] kinase activity
Specific function:
Bifunctional enzyme which can phosphorylate or dephosphorylate isocitrate dehydrogenase (IDH) on a specific serine residue. This is a regulatory mechanism which enables bacteria to bypass the Krebs cycle via the glyoxylate shunt in response to the source of carbon. When bacteria are grown on glucose, IDH is fully active and unphosphorylated, but when grown on acetate or ethanol, the activity of IDH declines drastically concomitant with its phosphorylation
Gene Name:
aceK
Locus Tag:
PA1376
Molecular weight:
66.8 kDa
Reactions
ATP + [isocitrate dehydrogenase (NADP(+))] = ADP + [isocitrate dehydrogenase (NADP(+))] phosphate.
General function:
Involved in ATP binding
Specific function:
Involved in cell wall formation. Catalyzes the final step in the synthesis of UDP-N-acetylmuramoyl-pentapeptide, the precursor of murein
Gene Name:
murF
Locus Tag:
PA4416
Molecular weight:
47.4 kDa
Reactions
ATP + UDP-N-acetylmuramoyl-L-alanyl-gamma-D-glutamyl-L-lysine + D-alanyl-D-alanine = ADP + phosphate + UDP-N-acetylmuramoyl-L-alanyl-gamma-D-glutamyl-L-lysyl-D-alanyl-D-alanine.
General function:
Involved in magnesium ion binding
Specific function:
ATP + 7,8-diaminononanoate + CO(2) = ADP + phosphate + dethiobiotin
Gene Name:
bioD
Locus Tag:
PA0504
Molecular weight:
23.3 kDa
Reactions
ATP + 7,8-diaminononanoate + CO(2) = ADP + phosphate + dethiobiotin.
General function:
Involved in nucleotide binding
Specific function:
Involved in a multicomponent binding-protein-dependent transport system for glycine betaine/L-proline
Gene Name:
proV
Locus Tag:
PA5094
Molecular weight:
30.7 kDa
General function:
Involved in ATP binding
Specific function:
Cell wall formation. Catalyzes the addition of glutamate to the nucleotide precursor UDP-N-acetylmuramoyl-L-alanine (UMA)
Gene Name:
murD
Locus Tag:
PA4414
Molecular weight:
48.1 kDa
Reactions
ATP + UDP-N-acetylmuramoyl-L-alanine + glutamate = ADP + phosphate + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate.
General function:
Involved in catalytic activity
Specific function:
ATP + N(2)-formyl-N(1)-(5-phospho-D- ribosyl)glycinamide + L-glutamine + H(2)O = ADP + phosphate + 2- (formamido)-N(1)-(5-phospho-D-ribosyl)acetamidine + L-glutamate
Gene Name:
purL
Locus Tag:
PA3763
Molecular weight:
140.6 kDa
Reactions
ATP + N(2)-formyl-N(1)-(5-phospho-D-ribosyl)glycinamide + L-glutamine + H(2)O = ADP + phosphate + 2-(formamido)-N(1)-(5-phospho-D-ribosyl)acetamidine + L-glutamate.
General function:
Involved in ATP binding
Specific function:
ATP + 5-phospho-D-ribosylamine + glycine = ADP + phosphate + N(1)-(5-phospho-D-ribosyl)glycinamide
Gene Name:
purD
Locus Tag:
PA4855
Molecular weight:
45.2 kDa
Reactions
ATP + 5-phospho-D-ribosylamine + glycine = ADP + phosphate + N(1)-(5-phospho-D-ribosyl)glycinamide.
General function:
Involved in nucleotide binding
Specific function:
Part of the ABC transporter complex cysAWTP involved in sulfate/thiosulfate import. Responsible for energy coupling to the transport system
Gene Name:
cysA
Locus Tag:
PA0280
Molecular weight:
36.8 kDa
Reactions
ATP + H(2)O + sulfate(Out) = ADP + phosphate + sulfate(In).
General function:
Involved in ATP binding
Specific function:
Cell wall formation
Gene Name:
murC
Locus Tag:
PA4411
Molecular weight:
51.9 kDa
Reactions
ATP + UDP-N-acetylmuramate + L-alanine = ADP + phosphate + UDP-N-acetylmuramoyl-L-alanine.
General function:
Involved in nicotinate phosphoribosyltransferase activity
Specific function:
Nicotinate D-ribonucleotide + diphosphate = nicotinate + 5-phospho-alpha-D-ribose 1-diphosphate
Gene Name:
pncB
Locus Tag:
PA4919
Molecular weight:
46.1 kDa
Reactions
Beta-nicotinate D-ribonucleotide + diphosphate = nicotinate + 5-phospho-alpha-D-ribose 1-diphosphate.
General function:
Involved in magnesium ion binding
Specific function:
ATP + pyruvate = ADP + phosphoenolpyruvate
Gene Name:
pykA
Locus Tag:
PA4329
Molecular weight:
52.3 kDa
Reactions
ATP + pyruvate = ADP + phosphoenolpyruvate.
General function:
Involved in ATP binding
Specific function:
Catalyzes the addition of meso-diaminopimelic acid to the nucleotide precursor UDP-N-acetylmuramoyl-L-alanyl-D-glutamate (UMAG) in the biosynthesis of bacterial cell-wall peptidoglycan. Is also able to use many meso-diaminopimelate analogs as substrates, although much less efficiently, but not L-lysine
Gene Name:
murE
Locus Tag:
PA4417
Molecular weight:
51.3 kDa
Reactions
ATP + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate + meso-2,6-diaminoheptanedioate = ADP + phosphate + UDP-N-acetylmuramoyl-L-alanyl-D-gamma-glutamyl-meso-2,6-diamino-heptanedioate.
General function:
Involved in phosphoenolpyruvate carboxykinase (ATP) activity
Specific function:
ATP + oxaloacetate = ADP + phosphoenolpyruvate + CO(2)
Gene Name:
pckA
Locus Tag:
PA5192
Molecular weight:
55.7 kDa
Reactions
ATP + oxaloacetate = ADP + phosphoenolpyruvate + CO(2).
General function:
Involved in glycerate kinase activity
Specific function:
ATP + (R)-glycerate = ADP + 3-phospho-(R)- glycerate
Gene Name:
garK
Locus Tag:
PA1052
Molecular weight:
38.6 kDa
Reactions
ATP + (R)-glycerate = ADP + 3-phospho-(R)-glycerate.
General function:
Involved in ATP binding
Specific function:
Member of the two-component regulatory system phoQ/phoP involved in adaptation to low Mg(2+) environments and the control of acid resistance genes. In presence of low periplasmic Mg(2+) concentrations, phoQ functions as a membrane-associated protein kinase that undergoes autophosphorylation and subsequently transfers the phosphate to phoP, which results in the expression of phoP-activated genes (PAG) and repression of phoP-repressed genes (PRG). In presence of high periplasmic Mg(2+) concentrations, acts as a protein phosphatase that dephosphorylates phospho-phoP, which results in the repression of phoP-activated genes and may lead to expression of some phoP- repressed genes. Mediates magnesium influx to the cytosol by activation of mgtA. Promotes expression of the two- component regulatory system rstA/rstB and transcription of the hemL, mgrB, nagA, slyB, vboR and yrbL genes
Gene Name:
phoQ
Locus Tag:
PA1180
Molecular weight:
50.2 kDa
Reactions
ATP + protein L-histidine = ADP + protein N-phospho-L-histidine.
General function:
Involved in nucleotide binding
Specific function:
Part of the binding-protein-dependent transport system for ferric enterobactin. Probably responsible for energy coupling to the transport system
Gene Name:
fepC
Locus Tag:
PA4158
Molecular weight:
28.6 kDa
General function:
Involved in ligase activity
Specific function:
This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA
Gene Name:
accC
Locus Tag:
PA4848
Molecular weight:
48.9 kDa
Reactions
ATP + biotin-[carboxyl-carrier-protein] + CO(2) = ADP + phosphate + carboxy-biotin-[carboxyl-carrier-protein].
ATP + acetyl-CoA + HCO(3)(-) = ADP + phosphate + malonyl-CoA.
General function:
Involved in ATP binding
Specific function:
Transfers the gamma-phosphate of ATP to the 4'-position of a tetraacyldisaccharide 1-phosphate intermediate (termed DS-1- P) to form tetraacyldisaccharide 1,4'-bis-phosphate (lipid IVA)
Gene Name:
lpxK
Locus Tag:
PA2981
Molecular weight:
36.7 kDa
Reactions
ATP + (2-N,3-O-bis(3-hydroxytetradecanoyl)-beta-D-glucosaminyl)-(1->6)-(2-N,3-O-bis(3-hydroxytetradecanoyl)-beta-D-glucosaminyl phosphate) = ADP + (2-N,3-O-bis(3-hydroxytetradecanoyl)-4-O-phosphono-beta-D-glucosaminyl)-(1->6)-(2-N,3-O-bis(3-hydroxytetradecanoyl)-beta-D-glucosaminyl phosphate).
General function:
Involved in acetate-CoA ligase activity
Specific function:
Enables the cell to use acetate during aerobic growth to generate energy via the TCA cycle, and biosynthetic compounds via the glyoxylate shunt. Acetylates CheY, the response regulator involved in flagellar movement and chemotaxis
Gene Name:
acs
Locus Tag:
PA0887
Molecular weight:
71.8 kDa
Reactions
ATP + acetate + CoA = AMP + diphosphate + acetyl-CoA.
General function:
Involved in catalytic activity
Specific function:
2'-deoxyribonucleoside triphosphate + thioredoxin disulfide + H(2)O = ribonucleoside triphosphate + thioredoxin
Gene Name:
nrdD
Locus Tag:
PA1920
Molecular weight:
76.1 kDa
Reactions
2'-deoxyribonucleoside triphosphate + thioredoxin disulfide + H(2)O = ribonucleoside triphosphate + thioredoxin.
General function:
Involved in ATP binding
Specific function:
Catalyzes two reactions:the first one is the production of beta-formyl glycinamide ribonucleotide (GAR) from formate, ATP and beta GAR; the second, a side reaction, is the production of acetyl phosphate and ADP from acetate and ATP
Gene Name:
purT
Locus Tag:
PA3751
Molecular weight:
42.3 kDa
Reactions
Formate + ATP + 5'-phospho-ribosylglycinamide = 5'-phosphoribosyl-N-formylglycinamide + ADP + diphosphate.
General function:
Involved in nucleotide binding
Specific function:
Part of the ABC transporter complex CcmAB involved in the biogenesis of c-type cytochromes; once thought to export heme, this seems not to be the case, but its exact role is uncertain. Responsible for energy coupling to the transport system
Gene Name:
ccmA
Locus Tag:
PA1475
Molecular weight:
25 kDa
Reactions
ATP + H(2)O + heme(In) = ADP + phosphate + heme(Out).
General function:
Involved in cellular amino acid biosynthetic process
Specific function:
ATP + NH(3) + CO(2) = ADP + carbamoyl phosphate
Gene Name:
arcC
Locus Tag:
PA5173
Molecular weight:
33.1 kDa
Reactions
ATP + NH(3) + CO(2) = ADP + carbamoyl phosphate.
General function:
Involved in nucleotide binding
Specific function:
Probable catalytic subunit of a protein translocase for flagellum-specific export, or a proton translocase involved in local circuits at the flagellum. May be involved in a specialized protein export pathway that proceeds without signal peptide cleavage
Gene Name:
fliI
Locus Tag:
PA1104
Molecular weight:
48.6 kDa
Reactions
ATP + H(2)O + H(+)(In) = ADP + phosphate + H(+)(Out).
General function:
Involved in protein binding
Specific function:
Essential for recycling GMP and indirectly, cGMP
Gene Name:
gmk
Locus Tag:
PA5336
Molecular weight:
23.1 kDa
Reactions
ATP + GMP = ADP + GDP.
General function:
Involved in ATP binding
Specific function:
Catalyzes the phosphorylation of the position 2 hydroxy group of 4-diphosphocytidyl-2C-methyl-D-erythritol. Phosphorylates isopentenyl phosphate at low rates. Also acts on isopentenol, and, much less efficiently, dimethylallyl alcohol. Dimethylallyl monophosphate does not serve as a substrate
Gene Name:
ispE
Locus Tag:
PA4669
Molecular weight:
30.8 kDa
Reactions
ATP + 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol = ADP + 2-phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol.
General function:
Involved in nucleotide binding
Specific function:
Part of the ABC transporter complex MalEFGK involved in maltose/maltodextrin import. Responsible for energy coupling to the transport system
Gene Name:
malK
Locus Tag:
PA2341
Molecular weight:
40.2 kDa
Reactions
ATP + H(2)O + maltose(Out) = ADP + phosphate + maltose(In).
General function:
Involved in hydrogen ion transmembrane transporter activity
Specific function:
Key component of the F(0) channel; it plays a direct role in translocation across the membrane. A homomeric c-ring of 10 subunits forms the central stalk rotor element with the F(1) delta and epsilon subunits
Gene Name:
atpE
Locus Tag:
PA5559
Molecular weight:
8.6 kDa
General function:
Involved in ATP binding
Specific function:
Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. This small ubiquitous enzyme involved in the energy metabolism and nucleotide synthesis, is essential for maintenance and cell growth
Gene Name:
adk
Locus Tag:
PA3686
Molecular weight:
23.1 kDa
Reactions
ATP + AMP = 2 ADP.
General function:
Involved in nucleotide binding
Specific function:
Part of the ABC transporter complex PotABCD involved in spermidine/putrescine import. Responsible for energy coupling to the transport system
Gene Name:
potA
Locus Tag:
PA3607
Molecular weight:
40 kDa
Reactions
ATP + H(2)O + polyamine(Out) = ADP + phosphate + polyamine(In).
General function:
Involved in oxidoreductase activity
Specific function:
Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R2 contains the tyrosyl radical required for catalysis
Gene Name:
nrdB
Locus Tag:
PA1155
Molecular weight:
47.4 kDa
Reactions
2'-deoxyribonucleoside diphosphate + thioredoxin disulfide + H(2)O = ribonucleoside diphosphate + thioredoxin.
General function:
Involved in phosphomethylpyrimidine kinase activity
Specific function:
Catalyzes the phosphorylation of hydroxymethylpyrimidine phosphate (HMP-P) to HMP-PP, and of HMP to HMP-P. Shows no activity with pyridoxal, pyridoxamine or pyridoxine
Gene Name:
thiD
Locus Tag:
PA3975
Molecular weight:
28 kDa
Reactions
ATP + 4-amino-5-hydroxymethyl-2-methylpyrimidine = ADP + 4-amino-5-phosphonooxymethyl-2-methylpyrimidine.
ATP + 4-amino-2-methyl-5-phosphomethylpyrimidine = ADP + 4-amino-2-methyl-5-diphosphomethylpyrimidine.
General function:
Involved in pyridoxal kinase activity
Specific function:
Phosphorylates B6 vitamers; functions in a salvage pathway. Uses pyridoxamine, but has negligible activity toward pyridoxal and pyridoxine as substrates
Gene Name:
pdxY
Locus Tag:
PA5516
Molecular weight:
31.3 kDa
Reactions
ATP + pyridoxal = ADP + pyridoxal 5'-phosphate.
General function:
Involved in transferase activity, transferring phosphorus-containing groups
Specific function:
Catalyzes the phosphorylation of heptose(I) of the outer membrane lipopolysaccharide core
Gene Name:
rfaP
Locus Tag:
PA5009
Molecular weight:
31.3 kDa
General function:
Involved in transferase activity, transferring glycosyl groups
Specific function:
Heptose transfer to the lipopolysaccharide core. It transfers the innnermost heptose to [4'-P](3-deoxy-D-manno- octulosonic acid)2-IVA
Gene Name:
rfaC
Locus Tag:
PA5011
Molecular weight:
39.7 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for phosphate; probably responsible for the translocation of the substrate across the membrane
Gene Name:
pstA
Locus Tag:
PA5367
Molecular weight:
61.2 kDa
General function:
Involved in lipopolysaccharide transport
Specific function:
Part of the ABC transporter complex lptBFG involved in the translocation of lipopolysaccharide (LPS) from the inner membrane to the outer membrane
Gene Name:
lptG
Locus Tag:
PA3827
Molecular weight:
39.2 kDa
General function:
Involved in transporter activity
Specific function:
Part of the ABC transporter complex cysAWTP (TC 3.A.1.6.1) involved in sulfate/thiosulfate import. Probably responsible for the translocation of the substrate across the membrane
Gene Name:
cysW
Locus Tag:
PA0281
Molecular weight:
31.3 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for dipeptides; probably responsible for the translocation of the substrate across the membrane
Gene Name:
dppB
Locus Tag:
PA4503
Molecular weight:
37 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for dipeptides; probably responsible for the translocation of the substrate across the membrane
Gene Name:
dppC
Locus Tag:
PA4504
Molecular weight:
32.4 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for aspartate/glutamate; probably responsible for the translocation of the substrate across the membrane
Gene Name:
gltJ
Locus Tag:
PA1341
Molecular weight:
27.6 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for aspartate/glutamate; probably responsible for the translocation of the substrate across the membrane
Gene Name:
gltK
Locus Tag:
PA1340
Molecular weight:
24.6 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for histidine; probably responsible for the translocation of the substrate across the membrane
Gene Name:
hisM
Locus Tag:
PA2925
Molecular weight:
26.7 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for branched-chain amino acids. Probably responsible for the translocation of the substrates across the membrane
Gene Name:
livH
Locus Tag:
PA1073
Molecular weight:
32.5 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for molybdenum; probably responsible for the translocation of the substrate across the membrane
Gene Name:
modB
Locus Tag:
PA1862
Molecular weight:
24.4 kDa
General function:
Involved in lipopolysaccharide-transporting ATPase acti
Specific function:
Part of the ABC transporter complex lptBFG involved in the translocation of lipopolysaccharide (LPS) from the inner membrane to the outer membrane
Gene Name:
lptF
Locus Tag:
PA3828
Molecular weight:
41.3 kDa
General function:
Involved in transporter activity
Specific function:
Required for the activity of the bacterial periplasmic transport system of putrescine and spermidine
Gene Name:
potB
Locus Tag:
PA3608
Molecular weight:
32.7 kDa
General function:
Involved in transporter activity
Specific function:
Required for the activity of the bacterial periplasmic transport system of putrescine and spermidine
Gene Name:
potC
Locus Tag:
PA3609
Molecular weight:
27.7 kDa
General function:
Involved in transporter activity
Specific function:
Required for the activity of the bacterial periplasmic transport system of putrescine
Gene Name:
potI
Locus Tag:
PA0304
Molecular weight:
31.9 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for phosphate; probably responsible for the translocation of the substrate across the membrane
Gene Name:
pstC
Locus Tag:
PA5368
Molecular weight:
73.8 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for ribose. Probably responsible for the translocation of the substrate across the membrane
Gene Name:
rbsC
Locus Tag:
PA1948
Molecular weight:
34 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for branched-chain amino acids. Probably responsible for the translocation of the substrates across the membrane
Gene Name:
livM
Locus Tag:
PA1072
Molecular weight:
45.6 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for ferric enterobactin. Probably responsible for the translocation of the substrate across the membrane
Gene Name:
fepD
Locus Tag:
PA4160
Molecular weight:
34.6 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for ferric enterobactin. Probably responsible for the translocation of the substrate across the membrane
Gene Name:
fepG
Locus Tag:
PA4161
Molecular weight:
34.8 kDa
General function:
Involved in transporter activity
Specific function:
Required for the activity of the bacterial periplasmic transport system of putrescine
Gene Name:
potH
Locus Tag:
PA0303
Molecular weight:
32.4 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for histidine; probably responsible for the translocation of the substrate across the membrane
Gene Name:
hisQ
Locus Tag:
PA2924
Molecular weight:
24.5 kDa
General function:
Involved in nucleotide binding
Specific function:
Involved in lipid A export and possibly also in glycerophospholipid export and for biogenesis of the outer membrane. Transmembrane domains (TMD) form a pore in the inner membrane and the ATP-binding domain (NBD) is responsible for energy generation
Gene Name:
msbA
Locus Tag:
PA4997
Molecular weight:
66.4 kDa
General function:
Involved in transporter activity
Specific function:
Part of a binding-protein-dependent transport system for aliphatic sulfonates. Probably responsible for the translocation of the substrate across the membrane
Gene Name:
ssuC
Locus Tag:
PA3443
Molecular weight:
28.5 kDa
General function:
Involved in transporter activity
Specific function:
Part of a binding-protein-dependent transport system for taurine. Probably responsible for the translocation of the substrate across the membrane
Gene Name:
tauC
Locus Tag:
PA3936
Molecular weight:
29.4 kDa
General function:
Involved in phosphotransferase activity, alcohol group as acceptor
Specific function:
Catalyzes the ADP transfer to D-glycero-D-manno-heptose 1-phosphate, yielding ADP-D,D-heptose
Gene Name:
hldE
Locus Tag:
PA4996
Molecular weight:
50.3 kDa
Reactions
ATP + D-glycero-beta-D-manno-heptose 7-phosphate = ADP + D-glycero-beta-D-manno-heptose 1,7-bisphosphate.
ATP + D-glycero-beta-D-manno-heptose 1-phosphate = diphosphate + ADP-D-glycero-beta-D-manno-heptose.
General function:
Involved in transporter activity
Specific function:
This protein specifically binds sulfate and is involved in its transmembrane transport
Gene Name:
sbp
Locus Tag:
PA0283
Molecular weight:
36.4 kDa
General function:
Involved in GTP binding
Specific function:
GTP-driven Fe(2+) uptake system
Gene Name:
feoB
Locus Tag:
PA4358
Molecular weight:
82.5 kDa
General function:
Involved in binding
Specific function:
Binds ferrienterobactin; part of the binding-protein- dependent transport system for uptake of ferrienterobactin
Gene Name:
fepB
Locus Tag:
PA4159
Molecular weight:
32.1 kDa
General function:
Involved in nucleotide binding
Specific function:
Part of the ABC transporter complex ZnuABC involved in zinc import. Responsible for energy coupling to the transport system
Gene Name:
znuC
Locus Tag:
PA5500
Molecular weight:
29.2 kDa
General function:
Involved in nucleotide binding
Specific function:
Part of the binding-protein-dependent transport system for dipeptides. Probably responsible for energy coupling to the transport system
Gene Name:
dppD
Locus Tag:
PA4505
Molecular weight:
35.4 kDa
General function:
Involved in protein complex assembly
Specific function:
Required for the export of heme to the periplasm for the biogenesis of c-type cytochromes
Gene Name:
ccmC
Locus Tag:
PA1477
Molecular weight:
28.3 kDa
General function:
Involved in transporter activity
Specific function:
Part of the ABC transporter complex cysAWTP (TC 3.A.1.6.1) involved in sulfate/thiosulfate import. This protein specifically binds thiosulfate and is involved in its transmembrane transport
Gene Name:
cysP
Locus Tag:
PA1493
Molecular weight:
36.5 kDa
General function:
Involved in nucleotide binding
Specific function:
Part of the ABC transporter complex lptBFG involved in the translocation of lipopolysaccharide (LPS) from the inner membrane to the outer membrane. Probably responsible for energy coupling to the transport system
Gene Name:
lptB
Locus Tag:
PA4461
Molecular weight:
26.5 kDa
General function:
Involved in nucleotide binding
Specific function:
Part of the binding-protein-dependent transport system for dipeptides. Probably responsible for energy coupling to the transport system
Gene Name:
dppF
Locus Tag:
PA4506
Molecular weight:
36.3 kDa
General function:
Involved in phosphate ion binding
Specific function:
Part of the ABC transporter complex pstSACB involved in phosphate import
Gene Name:
pstS
Locus Tag:
PA5369
Molecular weight:
34.5 kDa
General function:
Involved in heme transporter activity
Specific function:
Required for the export of heme to the periplasm for the biogenesis of c-type cytochromes
Gene Name:
ccmB
Locus Tag:
PA1476
Molecular weight:
23.4 kDa
General function:
Involved in lipopolysaccharide transmembrane transporter activity
Specific function:
Required for the translocation of lipopolysaccharide (LPS) from the inner membrane to the outer membrane
Gene Name:
lptC
Locus Tag:
PA4459
Molecular weight:
21.4 kDa
General function:
Involved in electron carrier activity
Specific function:
Monothiol glutaredoxin involved in the biogenesis of iron-sulfur clusters (Probable)
Gene Name:
grxD
Locus Tag:
PA3533
Molecular weight:
11.8 kDa
General function:
Involved in nucleotide binding
Specific function:
Part of the binding-protein-dependent transport system for glutamate and aspartate. Probably responsible for energy coupling to the transport system
Gene Name:
gltL
Locus Tag:
PA1339
Molecular weight:
26.9 kDa
General function:
Involved in lipopolysaccharide binding
Specific function:
Required for the translocation of lipopolysaccharide (LPS) from the inner membrane to the outer membrane. May act as a chaperone that facilitates LPS transfer across the aquaeous environment of the periplasm. Interacts specifically with the lipid A domain of LPS
Gene Name:
lptA
Locus Tag:
PA0005
Molecular weight:
28.7 kDa
General function:
Carbohydrate transport and metabolism
Specific function:
Involved in the high-affinity D-ribose membrane transport system and also serves as the primary chemoreceptor for chemotaxis
Gene Name:
rbsB
Locus Tag:
PA1946
Molecular weight:
33.9 kDa
General function:
Involved in nucleotide binding
Specific function:
Component of the leucine-specific transport system
Gene Name:
livG
Locus Tag:
PA1071
Molecular weight:
28.3 kDa
General function:
Involved in transporter activity
Specific function:
Component of the high-affinity histidine permease, a binding-protein-dependent transport system. The other components are proteins hisQ, hisM, and hisP
Gene Name:
hisJ
Locus Tag:
PA2923
Molecular weight:
28.2 kDa
General function:
Energy production and conversion
Specific function:
A possible function for this protein is to guide the assembly of the membrane sector of the ATPase enzyme complex
Gene Name:
atpI
Locus Tag:
PA5561
Molecular weight:
13.7 kDa
General function:
Involved in arsenite transmembrane transporter activity
Specific function:
Involved in arsenical resistance. Thought to form the channel of an arsenite pump
Gene Name:
arsB
Locus Tag:
PA2278
Molecular weight:
45.1 kDa
General function:
Involved in ATP binding
Specific function:
Involved in the high-affinity zinc uptake transport system
Gene Name:
znuB
Locus Tag:
PA5501
Molecular weight:
27.3 kDa
General function:
Involved in protein-heme linkage
Specific function:
Heme chaperone required for the biogenesis of c-type cytochromes. Transiently binds heme delivered by CcmC and transfers the heme to apo-cytochromes in a process facilitated by CcmF and CcmH
Gene Name:
ccmE
Locus Tag:
PA1479
Molecular weight:
17.2 kDa
General function:
Involved in nucleotide binding
Specific function:
Component of the leucine-specific transport system
Gene Name:
livF
Locus Tag:
PA1070
Molecular weight:
25.6 kDa
General function:
Involved in electron carrier activity
Specific function:
The disulfide bond functions as an electron carrier in the glutathione-dependent synthesis of deoxyribonucleotides by the enzyme ribonucleotide reductase. In addition, it is also involved in reducing some disulfides in a coupled system with glutathione reductase
Gene Name:
grxC
Locus Tag:
PA5129
Molecular weight:
9.2 kDa
General function:
Involved in transporter activity
Specific function:
Dipeptide-binding protein of a transport system that can be subject to osmotic shock. DppA is also required for peptide chemotaxis
Gene Name:
dppA
Locus Tag:
PA4496
Molecular weight:
60.1 kDa
General function:
Not Available
Specific function:
Specific function unknown
Gene Name:
kdpF
Locus Tag:
PA1632
Molecular weight:
3.2 kDa
General function:
Involved in nucleotide binding
Specific function:
Part of the ABC transporter complex TauABC involved in taurine import. Responsible for energy coupling to the transport system
Gene Name:
tauB
Locus Tag:
PA3937
Molecular weight:
28.8 kDa
Reactions
ATP + H(2)O + taurine(Out) = ADP + phosphate + taurine(In).
General function:
Involved in nucleotide binding
Specific function:
Part of the ABC transporter complex ModABC involved in molybdenum import. Responsible for energy coupling to the transport system
Gene Name:
modC
Locus Tag:
PA1861
Molecular weight:
39.8 kDa
Reactions
ATP + H(2)O + molybdate(Out) = ADP + phosphate + molybdate(In).
General function:
Involved in metal ion binding
Specific function:
Involved in the high-affinity zinc uptake transport system
Gene Name:
znuA
Locus Tag:
PA5498
Molecular weight:
33.6 kDa
General function:
Amino acid transport and metabolism
Specific function:
Part of the binding-protein-dependent transport system for putrescine. Probably responsible for energy coupling to the transport system
Gene Name:
potG
Locus Tag:
PA0302
Molecular weight:
42.8 kDa
General function:
Involved in transporter activity
Specific function:
Part of a binding-protein-dependent transport system for taurine
Gene Name:
tauA
Locus Tag:
PA3938
Molecular weight:
35.9 kDa
General function:
Involved in nucleotide binding
Specific function:
Part of the ABC transporter complex SsuABC involved in aliphatic sulfonates import. Responsible for energy coupling to the transport system (Probable)
Gene Name:
ssuB
Locus Tag:
PA3442
Molecular weight:
29.8 kDa
General function:
Involved in electron carrier activity
Specific function:
Participates in various redox reactions through the reversible oxidation of its active center dithiol to a disulfide and catalyzes dithiol-disulfide exchange reactions
Gene Name:
trxA
Locus Tag:
PA5240
Molecular weight:
11.9 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for glutamate and aspartate. Binds to both aspartate and glutamate
Gene Name:
gltI
Locus Tag:
PA1342
Molecular weight:
33.1 kDa
General function:
Involved in amino acid transport
Specific function:
This protein is a component of the leucine-specific transport system, which is one of the two periplasmic binding protein-dependent transport systems of the high-affinity transport of the branched-chain amino acids in Pseudomonas aeruginosa
Gene Name:
livK
Locus Tag:
PA1074
Molecular weight:
39.8 kDa
General function:
Involved in ATP binding
Specific function:
Reutilizes the intact tripeptide L-alanyl-gamma-D- glutamyl-meso-diaminopimelate by linking it to UDP-N-acetylmuramic acid
Gene Name:
mpl
Locus Tag:
PA4020
Molecular weight:
48.5 kDa
General function:
Involved in transporter activity
Specific function:
Required for the activity of the bacterial periplasmic transport system of putrescine. Polyamine binding protein
Gene Name:
potF
Locus Tag:
PA1410
Molecular weight:
40.5 kDa
General function:
Involved in transporter activity
Specific function:
Required for the activity of the bacterial periplasmic transport system of putrescine and spermidine. Polyamine binding protein
Gene Name:
potD
Locus Tag:
PA3610
Molecular weight:
39.3 kDa
General function:
Involved in molybdate transmembrane-transporting ATPase activity
Specific function:
Involved in the transport of molybdenum into the cell. Binds molybdate with high specificity and affinity
Gene Name:
modA
Locus Tag:
PA1863
Molecular weight:
26.4 kDa
General function:
Signal transduction mechanisms
Specific function:
Member of the two-component regulatory system ArcB/ArcA. Sensor-regulator protein for anaerobic repression of the arc modulon. Activates ArcA via a four-step phosphorelay. ArcB can also dephosphorylate ArcA by a reverse phosphorelay involving His- 717 and Asp-576
Gene Name:
arcB
Locus Tag:
PA5172
Molecular weight:
38.1 kDa
Reactions
ATP + protein L-histidine = ADP + protein N-phospho-L-histidine.
General function:
Cell motility
Specific function:
Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. CheA is autophosphorylated; it can transfer its phosphate group to either CheB or CheY
Gene Name:
cheA
Locus Tag:
PA0178
Molecular weight:
68.9 kDa
Reactions
ATP + protein L-histidine = ADP + protein N-phospho-L-histidine.
General function:
Signal transduction mechanisms
Specific function:
Member of the two-component regulatory system creC/creB involved in catabolic regulation. CreC may function as a membrane- associated protein kinase that phosphorylates creB in response to environmental signals. CreC can also phosphorylate phoB
Gene Name:
creC
Locus Tag:
PA0464
Molecular weight:
52.3 kDa
Reactions
ATP + protein L-histidine = ADP + protein N-phospho-L-histidine.
General function:
Replication, recombination and repair
Specific function:
Has a helix-destabilizing activity, which is not coupled to the ATPase activity. Can unwind the 23S rRNA as well as 16S rRNA. Exhibits an RNA-dependent ATPase activity, specifically stimulated by bacterial 23S rRNA. Could play a major role in ribosome assembly, specifically in the assembly process of the active center of 50S ribosomal subunits
Gene Name:
dbpA
Locus Tag:
PA0455
Molecular weight:
49.8 kDa
Reactions
ATP + H(2)O = ADP + phosphate.
General function:
Replication, recombination and repair
Specific function:
Participates in initiation and elongation during chromosome replication; it exhibits DNA-dependent ATPase activity and contains distinct active sites for ATP binding, DNA binding, and interaction with dnaC protein, primase, and other prepriming proteins
Gene Name:
dnaB
Locus Tag:
PA4931
Molecular weight:
51.6 kDa
Reactions
ATP + H(2)O = ADP + phosphate.
General function:
Signal transduction mechanisms
Specific function:
Member of the two-component regulatory system kdpD/kdpE involved in the regulation of the kdp operon. KdpD may function as a membrane-associated protein kinase that phosphorylates kdpE in response to environmental signals
Gene Name:
kdpD
Locus Tag:
PA1636
Molecular weight:
97 kDa
Reactions
ATP + protein L-histidine = ADP + protein N-phospho-L-histidine.
General function:
Signal transduction mechanisms
Specific function:
Acts as a sensor for nitrate/nitrite and transduces signal of nitrate availability to the narL protein and of both nitrate/nitrite to the narP protein. NarX probably activates narL and narP by phosphorylation in the presence of nitrate. NarX also plays a negative role in controlling narL activity, probably through dephosphorylation in the absence of nitrate
Gene Name:
narX
Locus Tag:
PA3878
Molecular weight:
69.3 kDa
Reactions
ATP + protein L-histidine = ADP + protein N-phospho-L-histidine.
General function:
Inorganic ion transport and metabolism
Specific function:
Part of the ABC transporter complex PhnCDE involved in phosphonates, phosphate esters, phosphite and phosphate import. Responsible for energy coupling to the transport system
Gene Name:
phnC
Locus Tag:
PA3384
Molecular weight:
30.3 kDa
Reactions
ATP + H(2)O + phosphonate(Out) = ADP + phosphate + phosphonate(In).
General function:
Signal transduction mechanisms
Specific function:
Member of the two-component regulatory system phoR/phoB involved in the phosphate regulon genes expression. PhoR may function as a membrane-associated protein kinase that phosphorylates phoB in response to environmental signals
Gene Name:
phoR
Locus Tag:
PA5361
Molecular weight:
50.1 kDa
Reactions
ATP + protein L-histidine = ADP + protein N-phospho-L-histidine.
General function:
Replication, recombination and repair
Specific function:
Critical role in recombination and DNA repair. Help process Holliday junction intermediates to mature products by catalyzing branch migration. Has a DNA unwinding activity characteristic of a DNA helicase with a 3' to 5' polarity. recG unwind branched duplex DNA (Y-DNA). Has a role in constitutive stable DNA replication (csdR) and R-loop formation
Gene Name:
recG
Locus Tag:
PA5345
Molecular weight:
76.2 kDa
Reactions
ATP + H(2)O = ADP + phosphate.
General function:
Replication, recombination and repair
Specific function:
Involved in the recF recombination pathway; its gene expression is under the regulation of the SOS system. It is a DNA helicase
Gene Name:
recQ
Locus Tag:
PA3344
Molecular weight:
79.4 kDa
Reactions
ATP + H(2)O = ADP + phosphate.
General function:
Replication, recombination and repair
Specific function:
Rep helicase is a single-stranded DNA-dependent ATPase involved in DNA replication; it can initiate unwinding at a nick in the DNA. It binds to the single-stranded DNA and acts in a progressive fashion along the DNA in the 3' to 5' direction
Gene Name:
rep
Locus Tag:
PA5296
Molecular weight:
77 kDa
Reactions
ATP + H(2)O = ADP + phosphate.
General function:
Replication, recombination and repair
Specific function:
Can carry out ATP-dependent unwinding of double stranded RNA. Has a role in RNA decay. Involved in the RNA degradosome, a multi-enzyme complex important in RNA processing and messenger RNA degradation
Gene Name:
rhlB
Locus Tag:
PA3478
Molecular weight:
47.1 kDa
Reactions
ATP + H(2)O = ADP + phosphate.
General function:
Replication, recombination and repair
Specific function:
Acts as an ATP-dependent RNA helicase, able to unwind ds-RNA
Gene Name:
rhlE
Locus Tag:
PA0428
Molecular weight:
70.1 kDa
Reactions
ATP + H(2)O = ADP + phosphate.
General function:
Replication, recombination and repair
Specific function:
The ruvA-ruvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is an helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of ruvB. Binds both single- and double-stranded DNA (dsDNA). Binds preferentially to supercoiled rather than to relaxed dsDNA
Gene Name:
ruvA
Locus Tag:
PA0966
Molecular weight:
21.9 kDa
Reactions
ATP + H(2)O = ADP + phosphate.
General function:
Replication, recombination and repair
Specific function:
The ruvA-ruvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is an helicase that mediates the Holliday junction migration by localized denaturation and reannealing
Gene Name:
ruvB
Locus Tag:
PA0967
Molecular weight:
38.9 kDa
Reactions
ATP + H(2)O = ADP + phosphate.
General function:
Replication, recombination and repair
Specific function:
Has both ATPase and helicase activities. Unwinds DNA duplexes with 3' to 5' polarity with respect to the bound strand and initiates unwinding most effectively when a single-stranded region is present. Involved in the post-incision events of nucleotide excision repair and methyl-directed mismatch repair
Gene Name:
uvrD
Locus Tag:
PA5443
Molecular weight:
81.5 kDa
Reactions
ATP + H(2)O = ADP + phosphate.

Transporters

General function:
Involved in potassium-transporting ATPase activity
Specific function:
One of the components of the high-affinity ATP-driven potassium transport (or KDP) system, which catalyzes the hydrolysis of ATP coupled with the exchange of hydrogen and potassium ions
Gene Name:
kdpA
Locus Tag:
PA1633
Molecular weight:
59.9 kDa
Reactions
ATP + H(2)O + K(+)(Out) = ADP + phosphate + K(+)(In).
General function:
Involved in nucleotide binding
Specific function:
One of the components of the high-affinity ATP-driven potassium transport (or KDP) system, which catalyzes the hydrolysis of ATP coupled with the exchange of hydrogen and potassium ions
Gene Name:
kdpB
Locus Tag:
PA1634
Molecular weight:
73 kDa
Reactions
ATP + H(2)O + K(+)(Out) = ADP + phosphate + K(+)(In).
General function:
Involved in potassium-transporting ATPase activity
Specific function:
One of the components of the high-affinity ATP-driven potassium transport (or KDP) system, which catalyzes the hydrolysis of ATP coupled with the exchange of hydrogen and potassium ions. The C subunit may be involved in assembly of the KDP complex
Gene Name:
kdpC
Locus Tag:
PA1635
Molecular weight:
19.3 kDa
Reactions
ATP + H(2)O + K(+)(Out) = ADP + phosphate + K(+)(In).
General function:
Involved in nucleotide binding
Specific function:
Part of the ABC transporter complex RbsABCD involved in ribose import. Responsible for energy coupling to the transport system
Gene Name:
rbsA
Locus Tag:
PA1947
Molecular weight:
55.8 kDa
Reactions
ATP + H(2)O + monosaccharide(Out) = ADP + phosphate + monosaccharide(In).
General function:
Involved in nucleotide binding
Specific function:
Part of the binding-protein-dependent transport system for histidine. Probably responsible for energy coupling to the transport system
Gene Name:
hisP
Locus Tag:
PA2926
Molecular weight:
28.5 kDa
General function:
Involved in hydrogen ion transporting ATP synthase activity, rotational mechanism
Specific function:
Produces ATP from ADP in the presence of a proton gradient across the membrane
Gene Name:
atpC
Locus Tag:
PA5553
Molecular weight:
14.7 kDa
General function:
Involved in nucleoside diphosphate kinase activity
Specific function:
Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate
Gene Name:
ndk
Locus Tag:
PA3807
Molecular weight:
15.6 kDa
Reactions
ATP + nucleoside diphosphate = ADP + nucleoside triphosphate.
General function:
Involved in nucleotide binding
Specific function:
Part of the ABC transporter complex pstSACB involved in phosphate import. Responsible for energy coupling to the transport system
Gene Name:
pstB
Locus Tag:
PA5366
Molecular weight:
31 kDa
Reactions
ATP + H(2)O + phosphate(Out) = ADP + phosphate + phosphate(In).
General function:
Involved in hydrogen ion transmembrane transporter activity
Specific function:
Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane
Gene Name:
atpB
Locus Tag:
PA5560
Molecular weight:
31.9 kDa
General function:
Involved in hydrogen ion transmembrane transporter activity
Specific function:
Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0)
Gene Name:
atpF
Locus Tag:
PA5558
Molecular weight:
16.9 kDa
General function:
Involved in hydrogen ion transporting ATP synthase activity, rotational mechanism
Specific function:
This protein is part of the stalk that links CF(0) to CF(1). It either transmits conformational changes from CF(0) to CF(1) or is implicated in proton conduction
Gene Name:
atpH
Locus Tag:
PA5557
Molecular weight:
19.3 kDa
General function:
Involved in hydrogen ion transporting ATP synthase activity, rotational mechanism
Specific function:
Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex
Gene Name:
atpG
Locus Tag:
PA5555
Molecular weight:
31.6 kDa
General function:
Involved in ATP binding
Specific function:
Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit
Gene Name:
atpA
Locus Tag:
PA5556
Molecular weight:
55.4 kDa
Reactions
ATP + H(2)O + H(+)(In) = ADP + phosphate + H(+)(Out).
General function:
Involved in nucleotide binding
Specific function:
Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits
Gene Name:
atpD
Locus Tag:
PA5554
Molecular weight:
49.5 kDa
Reactions
ATP + H(2)O + H(+)(In) = ADP + phosphate + H(+)(Out).
General function:
Involved in nucleotide binding
Specific function:
Part of the ABC transporter complex UgpABCE involved in sn-glycerol-3-phosphate import. Responsible for energy coupling to the transport system (Probable). Can also transport glycerophosphoryl diesters
Gene Name:
ugpC
Locus Tag:
PA3187
Molecular weight:
42.2 kDa
Reactions
ATP + H(2)O + glycerol-3-phosphate(Out) = ADP + phosphate + glycerol-3-phosphate(In).
General function:
Involved in nucleotide binding
Specific function:
Part of the ABC transporter complex cysAWTP involved in sulfate/thiosulfate import. Responsible for energy coupling to the transport system
Gene Name:
cysA
Locus Tag:
PA0280
Molecular weight:
36.8 kDa
Reactions
ATP + H(2)O + sulfate(Out) = ADP + phosphate + sulfate(In).
General function:
Involved in nucleotide binding
Specific function:
Part of the binding-protein-dependent transport system for ferric enterobactin. Probably responsible for energy coupling to the transport system
Gene Name:
fepC
Locus Tag:
PA4158
Molecular weight:
28.6 kDa
General function:
Involved in nucleotide binding
Specific function:
Part of the ABC transporter complex MalEFGK involved in maltose/maltodextrin import. Responsible for energy coupling to the transport system
Gene Name:
malK
Locus Tag:
PA2341
Molecular weight:
40.2 kDa
Reactions
ATP + H(2)O + maltose(Out) = ADP + phosphate + maltose(In).
General function:
Involved in hydrogen ion transmembrane transporter activity
Specific function:
Key component of the F(0) channel; it plays a direct role in translocation across the membrane. A homomeric c-ring of 10 subunits forms the central stalk rotor element with the F(1) delta and epsilon subunits
Gene Name:
atpE
Locus Tag:
PA5559
Molecular weight:
8.6 kDa
General function:
Involved in nucleotide binding
Specific function:
Part of the ABC transporter complex PotABCD involved in spermidine/putrescine import. Responsible for energy coupling to the transport system
Gene Name:
potA
Locus Tag:
PA3607
Molecular weight:
40 kDa
Reactions
ATP + H(2)O + polyamine(Out) = ADP + phosphate + polyamine(In).
General function:
Involved in nucleotide binding
Specific function:
Probably part of a binding-protein-dependent transport system yecCS for an amino acid. Probably responsible for energy coupling to the transport system
Gene Name:
yecC
Locus Tag:
PA5152
Molecular weight:
28.4 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for phosphate; probably responsible for the translocation of the substrate across the membrane
Gene Name:
pstA
Locus Tag:
PA5367
Molecular weight:
61.2 kDa
General function:
Involved in lipopolysaccharide transport
Specific function:
Part of the ABC transporter complex lptBFG involved in the translocation of lipopolysaccharide (LPS) from the inner membrane to the outer membrane
Gene Name:
lptG
Locus Tag:
PA3827
Molecular weight:
39.2 kDa
General function:
Involved in transporter activity
Specific function:
Part of the ABC transporter complex cysAWTP (TC 3.A.1.6.1) involved in sulfate/thiosulfate import. Probably responsible for the translocation of the substrate across the membrane
Gene Name:
cysW
Locus Tag:
PA0281
Molecular weight:
31.3 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for dipeptides; probably responsible for the translocation of the substrate across the membrane
Gene Name:
dppB
Locus Tag:
PA4503
Molecular weight:
37 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for dipeptides; probably responsible for the translocation of the substrate across the membrane
Gene Name:
dppC
Locus Tag:
PA4504
Molecular weight:
32.4 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for aspartate/glutamate; probably responsible for the translocation of the substrate across the membrane
Gene Name:
gltJ
Locus Tag:
PA1341
Molecular weight:
27.6 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for aspartate/glutamate; probably responsible for the translocation of the substrate across the membrane
Gene Name:
gltK
Locus Tag:
PA1340
Molecular weight:
24.6 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for histidine; probably responsible for the translocation of the substrate across the membrane
Gene Name:
hisM
Locus Tag:
PA2925
Molecular weight:
26.7 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for branched-chain amino acids. Probably responsible for the translocation of the substrates across the membrane
Gene Name:
livH
Locus Tag:
PA1073
Molecular weight:
32.5 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for molybdenum; probably responsible for the translocation of the substrate across the membrane
Gene Name:
modB
Locus Tag:
PA1862
Molecular weight:
24.4 kDa
General function:
Involved in lipopolysaccharide-transporting ATPase acti
Specific function:
Part of the ABC transporter complex lptBFG involved in the translocation of lipopolysaccharide (LPS) from the inner membrane to the outer membrane
Gene Name:
lptF
Locus Tag:
PA3828
Molecular weight:
41.3 kDa
General function:
Involved in transporter activity
Specific function:
Required for the activity of the bacterial periplasmic transport system of putrescine and spermidine
Gene Name:
potB
Locus Tag:
PA3608
Molecular weight:
32.7 kDa
General function:
Involved in transporter activity
Specific function:
Required for the activity of the bacterial periplasmic transport system of putrescine and spermidine
Gene Name:
potC
Locus Tag:
PA3609
Molecular weight:
27.7 kDa
General function:
Involved in transporter activity
Specific function:
Required for the activity of the bacterial periplasmic transport system of putrescine
Gene Name:
potI
Locus Tag:
PA0304
Molecular weight:
31.9 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for phosphate; probably responsible for the translocation of the substrate across the membrane
Gene Name:
pstC
Locus Tag:
PA5368
Molecular weight:
73.8 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for ribose. Probably responsible for the translocation of the substrate across the membrane
Gene Name:
rbsC
Locus Tag:
PA1948
Molecular weight:
34 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for phosphonates; probably responsible for the translocation of the substrate across the membrane
Gene Name:
phnE
Locus Tag:
PA3382
Molecular weight:
28.4 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for branched-chain amino acids. Probably responsible for the translocation of the substrates across the membrane
Gene Name:
livM
Locus Tag:
PA1072
Molecular weight:
45.6 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for ferric enterobactin. Probably responsible for the translocation of the substrate across the membrane
Gene Name:
fepD
Locus Tag:
PA4160
Molecular weight:
34.6 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for ferric enterobactin. Probably responsible for the translocation of the substrate across the membrane
Gene Name:
fepG
Locus Tag:
PA4161
Molecular weight:
34.8 kDa
General function:
Involved in transporter activity
Specific function:
Required for the activity of the bacterial periplasmic transport system of putrescine
Gene Name:
potH
Locus Tag:
PA0303
Molecular weight:
32.4 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for histidine; probably responsible for the translocation of the substrate across the membrane
Gene Name:
hisQ
Locus Tag:
PA2924
Molecular weight:
24.5 kDa
General function:
Involved in nucleotide binding
Specific function:
Involved in lipid A export and possibly also in glycerophospholipid export and for biogenesis of the outer membrane. Transmembrane domains (TMD) form a pore in the inner membrane and the ATP-binding domain (NBD) is responsible for energy generation
Gene Name:
msbA
Locus Tag:
PA4997
Molecular weight:
66.4 kDa
General function:
Involved in transporter activity
Specific function:
Part of a binding-protein-dependent transport system for aliphatic sulfonates. Probably responsible for the translocation of the substrate across the membrane
Gene Name:
ssuC
Locus Tag:
PA3443
Molecular weight:
28.5 kDa
General function:
Involved in transporter activity
Specific function:
Part of a binding-protein-dependent transport system for taurine. Probably responsible for the translocation of the substrate across the membrane
Gene Name:
tauC
Locus Tag:
PA3936
Molecular weight:
29.4 kDa
General function:
Involved in transporter activity
Specific function:
This protein specifically binds sulfate and is involved in its transmembrane transport
Gene Name:
sbp
Locus Tag:
PA0283
Molecular weight:
36.4 kDa
General function:
Involved in GTP binding
Specific function:
GTP-driven Fe(2+) uptake system
Gene Name:
feoB
Locus Tag:
PA4358
Molecular weight:
82.5 kDa
General function:
Involved in binding
Specific function:
Binds ferrienterobactin; part of the binding-protein- dependent transport system for uptake of ferrienterobactin
Gene Name:
fepB
Locus Tag:
PA4159
Molecular weight:
32.1 kDa
General function:
Involved in nucleotide binding
Specific function:
Part of the ABC transporter complex ZnuABC involved in zinc import. Responsible for energy coupling to the transport system
Gene Name:
znuC
Locus Tag:
PA5500
Molecular weight:
29.2 kDa
General function:
Involved in nucleotide binding
Specific function:
Part of the binding-protein-dependent transport system for dipeptides. Probably responsible for energy coupling to the transport system
Gene Name:
dppD
Locus Tag:
PA4505
Molecular weight:
35.4 kDa
General function:
Involved in transporter activity
Specific function:
Part of the ABC transporter complex cysAWTP (TC 3.A.1.6.1) involved in sulfate/thiosulfate import. This protein specifically binds thiosulfate and is involved in its transmembrane transport
Gene Name:
cysP
Locus Tag:
PA1493
Molecular weight:
36.5 kDa
General function:
Involved in nucleotide binding
Specific function:
Part of the binding-protein-dependent transport system for dipeptides. Probably responsible for energy coupling to the transport system
Gene Name:
dppF
Locus Tag:
PA4506
Molecular weight:
36.3 kDa
General function:
Involved in phosphate ion binding
Specific function:
Part of the ABC transporter complex pstSACB involved in phosphate import
Gene Name:
pstS
Locus Tag:
PA5369
Molecular weight:
34.5 kDa
General function:
Involved in nucleotide binding
Specific function:
Part of the binding-protein-dependent transport system for glutamate and aspartate. Probably responsible for energy coupling to the transport system
Gene Name:
gltL
Locus Tag:
PA1339
Molecular weight:
26.9 kDa
General function:
Carbohydrate transport and metabolism
Specific function:
Involved in the high-affinity D-ribose membrane transport system and also serves as the primary chemoreceptor for chemotaxis
Gene Name:
rbsB
Locus Tag:
PA1946
Molecular weight:
33.9 kDa
General function:
Involved in nucleotide binding
Specific function:
Component of the leucine-specific transport system
Gene Name:
livG
Locus Tag:
PA1071
Molecular weight:
28.3 kDa
General function:
Involved in transporter activity
Specific function:
Component of the high-affinity histidine permease, a binding-protein-dependent transport system. The other components are proteins hisQ, hisM, and hisP
Gene Name:
hisJ
Locus Tag:
PA2923
Molecular weight:
28.2 kDa
General function:
Involved in ATP binding
Specific function:
Involved in the high-affinity zinc uptake transport system
Gene Name:
znuB
Locus Tag:
PA5501
Molecular weight:
27.3 kDa
General function:
Involved in nucleotide binding
Specific function:
Component of the leucine-specific transport system
Gene Name:
livF
Locus Tag:
PA1070
Molecular weight:
25.6 kDa
General function:
Involved in transporter activity
Specific function:
Dipeptide-binding protein of a transport system that can be subject to osmotic shock. DppA is also required for peptide chemotaxis
Gene Name:
dppA
Locus Tag:
PA4496
Molecular weight:
60.1 kDa
General function:
Not Available
Specific function:
Specific function unknown
Gene Name:
kdpF
Locus Tag:
PA1632
Molecular weight:
3.2 kDa
General function:
Involved in nucleotide binding
Specific function:
Part of the ABC transporter complex TauABC involved in taurine import. Responsible for energy coupling to the transport system
Gene Name:
tauB
Locus Tag:
PA3937
Molecular weight:
28.8 kDa
Reactions
ATP + H(2)O + taurine(Out) = ADP + phosphate + taurine(In).
General function:
Involved in nucleotide binding
Specific function:
Part of the ABC transporter complex ModABC involved in molybdenum import. Responsible for energy coupling to the transport system
Gene Name:
modC
Locus Tag:
PA1861
Molecular weight:
39.8 kDa
Reactions
ATP + H(2)O + molybdate(Out) = ADP + phosphate + molybdate(In).
General function:
Involved in metal ion binding
Specific function:
Involved in the high-affinity zinc uptake transport system
Gene Name:
znuA
Locus Tag:
PA5498
Molecular weight:
33.6 kDa
General function:
Amino acid transport and metabolism
Specific function:
Part of the binding-protein-dependent transport system for putrescine. Probably responsible for energy coupling to the transport system
Gene Name:
potG
Locus Tag:
PA0302
Molecular weight:
42.8 kDa
General function:
Involved in transporter activity
Specific function:
Part of a binding-protein-dependent transport system for taurine
Gene Name:
tauA
Locus Tag:
PA3938
Molecular weight:
35.9 kDa
General function:
Involved in nucleotide binding
Specific function:
Part of the ABC transporter complex SsuABC involved in aliphatic sulfonates import. Responsible for energy coupling to the transport system (Probable)
Gene Name:
ssuB
Locus Tag:
PA3442
Molecular weight:
29.8 kDa
General function:
Involved in transporter activity
Specific function:
Part of the binding-protein-dependent transport system for glutamate and aspartate. Binds to both aspartate and glutamate
Gene Name:
gltI
Locus Tag:
PA1342
Molecular weight:
33.1 kDa
General function:
Involved in amino acid transport
Specific function:
This protein is a component of the leucine-specific transport system, which is one of the two periplasmic binding protein-dependent transport systems of the high-affinity transport of the branched-chain amino acids in Pseudomonas aeruginosa
Gene Name:
livK
Locus Tag:
PA1074
Molecular weight:
39.8 kDa
General function:
Involved in transporter activity
Specific function:
Required for the activity of the bacterial periplasmic transport system of putrescine. Polyamine binding protein
Gene Name:
potF
Locus Tag:
PA1410
Molecular weight:
40.5 kDa
General function:
Involved in transporter activity
Specific function:
Required for the activity of the bacterial periplasmic transport system of putrescine and spermidine. Polyamine binding protein
Gene Name:
potD
Locus Tag:
PA3610
Molecular weight:
39.3 kDa
General function:
Involved in molybdate transmembrane-transporting ATPase activity
Specific function:
Involved in the transport of molybdenum into the cell. Binds molybdate with high specificity and affinity
Gene Name:
modA
Locus Tag:
PA1863
Molecular weight:
26.4 kDa
General function:
Inorganic ion transport and metabolism
Specific function:
Part of the ABC transporter complex PhnCDE involved in phosphonates, phosphate esters, phosphite and phosphate import. Responsible for energy coupling to the transport system
Gene Name:
phnC
Locus Tag:
PA3384
Molecular weight:
30.3 kDa
Reactions
ATP + H(2)O + phosphonate(Out) = ADP + phosphate + phosphonate(In).
General function:
alkylphosphonate transport
Specific function:
Phosphonate binding protein that is part of the phosphonate uptake system. Exhibits high affinity for 2-aminoethylphosphonate, and somewhat less affinity to ethylphosphonate, methylphosphonate, phosphonoacetate and phenylphosphonate.
Gene Name:
phnD
Locus Tag:
PA3383
Molecular weight:
37 kDa