Record Information
Version 1.0
Update Date 1/22/2018 12:54:54 PM
Metabolite IDPAMDB000459
Identification
Name: Hydroquinone
Description:Hydroquinone, also benzene-1,4-diol, is an aromatic organic compound which is a type of phenol, having the chemical formula C6H4(OH)2. Its chemical structure has two hydroxyl groups bonded to a benzene ring in a para position. Hydroquinone is a white granular solid at room temperature and pressure. The hydroxyl groups of hydroquinone are quite weakly acidic. Hydroquinone can lose an H+ from one of the hydroxyls to form a monophenolate ion or lose an H+ from both to form a diphenolate ion. Hydroquinone has a variety of uses principally associated with its action as a reducing agent which is soluble in water. The presence of hydroquinone in Pseudomonas aeruginosa arises from the catabolism of tyrosine and other similar aromatic substrates.
Structure
Thumb
Synonyms:
  • 1,4-Benzenediol
  • 1,4-Dihydroxy-benzeen
  • 1,4-Dihydroxy-benzol
  • 1,4-Dihydroxybenzen
  • 1,4-Diidrobenzene
  • 4-Hydroxyphenol
  • A-Hydroquinone
  • Alpha-Hydroquinone
  • B-Quinol
  • Benzene-1,4-diol
  • Benzohydroquinone
  • Benzoquinol
  • Beta-Quinol
  • Dihydroquinone
  • Dihydroxybenzene
  • Hydrochinon
  • Hydrochinone
  • Hydroquinol
  • Hydroquinole
  • Hydroquinone
  • Hydroquinone for synthesis
  • Hydroquinone gr
  • Hydroquinoue
  • Idrochinone
  • Melanex
  • P-Benzenediol
  • P-Dihydroxybenzene
  • P-Dioxobenzene
  • P-Dioxybenzene
  • P-Hydroquinone
  • P-Hydroxybenzene
  • P-Hydroxyphenol
  • Phiaquin
  • Quinol
  • Solaquin forte
  • α-Hydroquinone
  • β-Quinol
Chemical Formula: C6H6O2
Average Molecular Weight: 110.1106
Monoisotopic Molecular Weight: 110.036779436
InChI Key: QIGBRXMKCJKVMJ-UHFFFAOYSA-N
InChI:InChI=1S/C6H6O2/c7-5-1-2-6(8)4-3-5/h1-4,7-8H
CAS number: 123-31-9
IUPAC Name:benzene-1,4-diol
Traditional IUPAC Name: α-hydroquinone
SMILES:OC1=CC=C(O)C=C1
Chemical Taxonomy
Taxonomy DescriptionThis compound belongs to the class of organic compounds known as hydroquinones. These are compounds containing a hydroquinone moiety, which consists of a benzene ring with a hydroxyl groups at positions 1 and 4.
Kingdom Organic compounds
Super ClassBenzenoids
Class Benzene and substituted derivatives
Sub ClassPhenols and derivatives
Direct Parent Hydroquinones
Alternative Parents
Substituents
  • Hydroquinone
  • Hydrocarbon derivative
  • Organooxygen compound
  • Aromatic homomonocyclic compound
Molecular Framework Aromatic homomonocyclic compounds
External Descriptors
Physical Properties
State: Solid
Charge:0
Melting point: 172.3 °C
Experimental Properties:
PropertyValueSource
Water Solubility:72.0 mg/mL at 25 oC [GRANGER,FS & NELSON,JM (1921)]PhysProp
LogP:0.59 [HANSCH,C ET AL. (1995)]PhysProp
Predicted Properties
PropertyValueSource
Water Solubility95.5 mg/mLALOGPS
logP0.71ALOGPS
logP1.37ChemAxon
logS-0.06ALOGPS
pKa (Strongest Acidic)9.68ChemAxon
pKa (Strongest Basic)-5.9ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area40.46 Å2ChemAxon
Rotatable Bond Count0ChemAxon
Refractivity30.02 m3·mol-1ChemAxon
Polarizability10.75 Å3ChemAxon
Number of Rings1ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations: Cytoplasm
Reactions:
Pathways:
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-MS (2 TMS)splash10-0f79-2490000000-6b4fec222a3499d93790View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-03di-9600000000-e670ba090cb27367db12View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-01p6-9000000000-5fc32c7688c1612df1e7View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-000i-9000000000-c5853ce8ef225ea5c353View in MoNA
LC-MS/MSLC-MS/MS Spectrum - EI-B (Unknown) , Positivesplash10-03di-9800000000-c90fd4986fea9691ecbfView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-03di-0900000000-8d8328e4f7cd2ebaa27dView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-03di-1900000000-9290fcb93f170fc3143fView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-01si-9200000000-9f707b9d0c4ad0b73b30View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0a4i-0900000000-d3aae38632ac4c40fd4fView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0a4i-0900000000-74f15490ba4f49cf8c18View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4i-9800000000-1cb01248e88fce387578View in MoNA
MSMass Spectrum (Electron Ionization)splash10-03di-9500000000-1fa8477944a662535e76View in MoNA
1D NMR1H NMR SpectrumNot Available
1D NMR1H NMR SpectrumNot Available
1D NMR13C NMR SpectrumNot Available
2D NMR[1H,13C] 2D NMR SpectrumNot Available
References
References:
  • Barber ED, Hill T, Schum DB: The percutaneous absorption of hydroquinone (HQ) through rat and human skin in vitro. Toxicol Lett. 1995 Oct;80(1-3):167-72. Pubmed: 7482585
  • Boyle J, Kennedy CT: Hydroquinone concentrations in skin lightening creams. Br J Dermatol. 1986 Apr;114(4):501-4. Pubmed: 3964548
  • Bucks DA, McMaster JR, Guy RH, Maibach HI: Percutaneous absorption of hydroquinone in humans: effect of 1-dodecylazacycloheptan-2-one (azone) and the 2-ethylhexyl ester of 4-(dimethylamino)benzoic acid (Escalol 507). J Toxicol Environ Health. 1988;24(3):279-89. Pubmed: 3260963
  • Carbonnelle P, Lison D, Leroy JY, Lauwerys R: Effect of the benzene metabolite, hydroquinone, on interleukin-1 secretion by human monocytes in vitro. Toxicol Appl Pharmacol. 1995 Jun;132(2):220-6. Pubmed: 7540334
  • Gaskell M, McLuckie KI, Farmer PB: Comparison of the repair of DNA damage induced by the benzene metabolites hydroquinone and p-benzoquinone: a role for hydroquinone in benzene genotoxicity. Carcinogenesis. 2005 Mar;26(3):673-80. Epub 2004 Dec 23. Pubmed: 15618234
  • Inayat-Hussain SH, McGuinness SM, Johansson R, Lundstrom J, Ross D: Caspase-dependent and -independent mechanisms in apoptosis induced by hydroquinone and catechol metabolites of remoxipride in HL-60 cells. Chem Biol Interact. 2000 Aug 15;128(1):51-63. Pubmed: 10996300
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keh ES, Hayakawa I, Takahashi H, Watanabe A, Iwasaki Y, Akiyoshi K, Nakabayashi N: Improving a self-curing dental resin by eliminating oxygen, hydroquinone and water from its curing process. Dent Mater J. 2002 Dec;21(4):373-82. Pubmed: 12608426
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Kooyers TJ, Westerhof W: [Toxicological aspects and health risks associated with hydroquinone in skin bleaching formula] Ned Tijdschr Geneeskd. 2004 Apr 17;148(16):768-71. Pubmed: 15129564
  • Li X, Zhuang Z, Liu J, Huang H, Wei Q, Yang X: [Protein changes in human embryonic lung fibroblasts after hydroquinone stimulation using proteomic technique] Wei Sheng Yan Jiu. 2004 Nov;33(6):654-7. Pubmed: 15727168
  • McDonald TA, Holland NT, Skibola C, Duramad P, Smith MT: Hypothesis: phenol and hydroquinone derived mainly from diet and gastrointestinal flora activity are causal factors in leukemia. Leukemia. 2001 Jan;15(1):10-20. Pubmed: 11243376
  • Nilsson LB: High sensitivity determination of the remoxipride hydroquinone metabolite NCQ-344 in plasma by coupled column reversed-phase liquid chromatography and electrochemical detection. Biomed Chromatogr. 1998 Mar-Apr;12(2):65-8. Pubmed: 9568272
  • Oliveira NL, Kalf GF: Induced differentiation of HL-60 promyelocytic leukemia cells to monocyte/macrophages is inhibited by hydroquinone, a hematotoxic metabolite of benzene. Blood. 1992 Feb 1;79(3):627-33. Pubmed: 1732008
  • Subrahmanyam VV, Kolachana P, Smith MT: Hydroxylation of phenol to hydroquinone catalyzed by a human myeloperoxidase-superoxide complex: possible implications in benzene-induced myelotoxicity. Free Radic Res Commun. 1991;15(5):285-96. Pubmed: 1666626
  • Wester RC, Melendres J, Hui X, Cox R, Serranzana S, Zhai H, Quan D, Maibach HI: Human in vivo and in vitro hydroquinone topical bioavailability, metabolism, and disposition. J Toxicol Environ Health A. 1998 Jun 26;54(4):301-17. Pubmed: 9638901
Synthesis Reference: Miyanohara, Isao; Yanagihara, Tadahisa. Hydroquinone. Jpn. Kokai Tokkyo Koho (1977), 4 pp.
Material Safety Data Sheet (MSDS) Download (PDF)
External Links:
ResourceLink
CHEBI ID17594
HMDB IDHMDB02434
Pubchem Compound ID785
Kegg IDC15603
ChemSpider ID764
WikipediaHydroquinone
BioCyc IDHYDROQUINONE
EcoCyc IDHYDROQUINONE
Ligand ExpoHQE

Enzymes

General function:
Involved in electron carrier activity
Specific function:
Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth
Gene Name:
sdhB
Locus Tag:
PA1584
Molecular weight:
26.2 kDa
Reactions
Succinate + acceptor = fumarate + reduced acceptor.
General function:
Involved in oxidoreductase activity
Specific function:
Oxidizes proline to glutamate for use as a carbon and nitrogen source and also function as a transcriptional repressor of the put operon
Gene Name:
putA
Locus Tag:
PA0782
Molecular weight:
115.6 kDa
Reactions
L-proline + acceptor = (S)-1-pyrroline-5-carboxylate + reduced acceptor.
(S)-1-pyrroline-5-carboxylate + NAD(P)(+) + 2 H(2)O = L-glutamate + NAD(P)H.
General function:
Involved in D-amino-acid dehydrogenase activity
Specific function:
Oxidative deamination of D-amino acids
Gene Name:
dadA
Locus Tag:
PA5304
Molecular weight:
47.1 kDa
Reactions
A D-amino acid + H(2)O + acceptor = a 2-oxo acid + NH(3) + reduced acceptor.
General function:
Involved in catalytic activity
Specific function:
(S)-dihydroorotate + a quinone = orotate + a quinol
Gene Name:
pyrD
Locus Tag:
PA3050
Molecular weight:
36.1 kDa
Reactions
(S)-dihydroorotate + a quinone = orotate + a quinol.
General function:
Involved in electron carrier activity
Specific function:
Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth
Gene Name:
sdhA
Locus Tag:
PA1583
Molecular weight:
63.5 kDa
Reactions
Succinate + acceptor = fumarate + reduced acceptor.
General function:
Involved in succinate dehydrogenase activity
Specific function:
Membrane-anchoring subunit of succinate dehydrogenase (SDH)
Gene Name:
sdhD
Locus Tag:
PA1582
Molecular weight:
13.7 kDa
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoA
Locus Tag:
PA2637
Molecular weight:
15 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoB
Locus Tag:
PA2638
Molecular weight:
25.4 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in oxidoreductase activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoE
Locus Tag:
PA2640
Molecular weight:
18.1 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in oxidation-reduction process
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone
Gene Name:
nuoH
Locus Tag:
PA2643
Molecular weight:
36.7 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in electron carrier activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoI
Locus Tag:
PA2644
Molecular weight:
20.6 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoJ
Locus Tag:
PA2645
Molecular weight:
17.6 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
There are 2 NADH dehydrogenases in Pseudomonas aeruginosa, however only this complex is able to use dNADH (reduced nicotinamide hypoxanthine dinucleotide, deamino-NADH) and dNADH-DB (dimethoxy- 5-methyl-6-decyl-1,4-benzoquinone) as substrates
Gene Name:
nuoK
Locus Tag:
PA2646
Molecular weight:
11 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoM
Locus Tag:
PA2648
Molecular weight:
55.7 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoN
Locus Tag:
PA2649
Molecular weight:
51.7 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoF
Locus Tag:
PA2641
Molecular weight:
48.7 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoC
Locus Tag:
PA2639
Molecular weight:
68.3 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in electron carrier activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoG
Locus Tag:
PA2642
Molecular weight:
99 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoL
Locus Tag:
PA2647
Molecular weight:
66.2 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in malate dehydrogenase (quinone) activity
Specific function:
(S)-malate + a quinone = oxaloacetate + reduced quinone
Gene Name:
mqo
Locus Tag:
PA3452
Molecular weight:
57.2 kDa
Reactions
(S)-malate + a quinone = oxaloacetate + reduced quinone.
General function:
Involved in succinate dehydrogenase activity
Specific function:
Membrane-anchoring subunit of succinate dehydrogenase (SDH)
Gene Name:
sdhC
Locus Tag:
PA1581
Molecular weight:
13.7 kDa