Record Information
Version 1.0
Update Date 1/22/2018 11:54:54 AM
Metabolite IDPAMDB000601
Identification
Name: Inosinic acid
Description:Inosinic acid is a purine nucleotide which has hypoxanthine as the base and one phosphate group esterified to the sugar moiety. It is formed by the deamination of AMP and when hydrolysed produces inosine. Inosinic acid is the ribonucleotide of hypoxanthine and is the first compound formed during the synthesis of purine. (Wikipedia)
Structure
Thumb
Synonyms:
  • 5'-IMP
  • 5'-Inosinate
  • 5'-Inosine monophosphate
  • 5'-Inosine monophosphoric acid
  • 5'-Inosinic acid
  • IMP
  • Inosinate
  • Inosine 5'-monophosphate
  • Inosine 5'-monophosphoric acid
  • Inosine 5'-phosphate
  • Inosine 5'-phosphoric acid
  • Inosine Monophosphate
  • Inosine monophosphoric acid
  • Inosine-5'-monophosphate
  • Inosine-5'-monophosphoric acid
  • Inosine-5'-phosphate
  • Inosine-5'-phosphoric acid
  • Inosinic acid
  • Ribosylhypoxanthine monophosphate
  • Ribosylhypoxanthine monophosphoric acid
Chemical Formula: C10H13N4O8P
Average Molecular Weight: 348.206
Monoisotopic Molecular Weight: 348.047099924
InChI Key: GRSZFWQUAKGDAV-KQYNXXCUSA-N
InChI:InChI=1S/C10H13N4O8P/c15-6-4(1-21-23(18,19)20)22-10(7(6)16)14-3-13-5-8(14)11-2-12-9(5)17/h2-4,6-7,10,15-16H,1H2,(H,11,12,17)(H2,18,19,20)/t4-,6-,7-,10-/m1/s1
CAS number: 131-99-7
IUPAC Name:{[(2R,3S,4R,5R)-3,4-dihydroxy-5-(6-oxo-6,9-dihydro-1H-purin-9-yl)oxolan-2-yl]methoxy}phosphonic acid
Traditional IUPAC Name: inosine-5'-monophosphate
SMILES:O[C@@H]1[C@@H](COP(O)(O)=O)O[C@H]([C@@H]1O)N1C=NC2=C1N=CNC2=O
Chemical Taxonomy
Taxonomy DescriptionThis compound belongs to the class of organic compounds known as purine ribonucleoside monophosphates. These are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached.
Kingdom Organic compounds
Super ClassNucleosides, nucleotides, and analogues
Class Purine nucleotides
Sub ClassPurine ribonucleotides
Direct Parent Purine ribonucleoside monophosphates
Alternative Parents
Substituents
  • Purine ribonucleoside monophosphate
  • N-glycosyl compound
  • Glycosyl compound
  • Monosaccharide phosphate
  • Hypoxanthine
  • 6-oxopurine
  • Purine
  • Imidazopyrimidine
  • Monoalkyl phosphate
  • Pyrimidone
  • Alkyl phosphate
  • Pyrimidine
  • Phosphoric acid ester
  • Organic phosphoric acid derivative
  • Organic phosphate
  • N-substituted imidazole
  • Monosaccharide
  • Saccharide
  • Heteroaromatic compound
  • Vinylogous amide
  • Oxolane
  • Imidazole
  • Azole
  • Secondary alcohol
  • Lactam
  • 1,2-diol
  • Oxacycle
  • Azacycle
  • Organoheterocyclic compound
  • Hydrocarbon derivative
  • Organooxygen compound
  • Organonitrogen compound
  • Alcohol
  • Aromatic heteropolycyclic compound
Molecular Framework Aromatic heteropolycyclic compounds
External Descriptors
Physical Properties
State: Solid
Charge:-2
Melting point: Not Available
Experimental Properties:
PropertyValueSource
LogP:-2.824PhysProp
Predicted Properties
PropertyValueSource
Water Solubility3.05 mg/mLALOGPS
logP-2ALOGPS
logP-2.9ChemAxon
logS-2.1ALOGPS
pKa (Strongest Acidic)1.32ChemAxon
pKa (Strongest Basic)0.51ChemAxon
Physiological Charge-2ChemAxon
Hydrogen Acceptor Count9ChemAxon
Hydrogen Donor Count5ChemAxon
Polar Surface Area175.73 Å2ChemAxon
Rotatable Bond Count4ChemAxon
Refractivity72.2 m3·mol-1ChemAxon
Polarizability29.14 Å3ChemAxon
Number of Rings3ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations: Cytoplasm
Reactions:
Pathways:
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-MS (5 TMS)splash10-014i-1952000000-fd534f438bc14efb9a2cView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-000i-0900000000-a46a4af4f25c710c773bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-000i-1900000000-e3960644419fb73668b1View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-0fb9-2983200000-58dfb3434545241ee7b6View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Positivesplash10-000i-1900000000-d9a723b143b346290896View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Negativesplash10-002b-9203000000-e2ceede282569ac77de5View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, NegativeNot Available
1D NMR1H NMR SpectrumNot Available
1D NMR1H NMR SpectrumNot Available
1D NMR13C NMR SpectrumNot Available
2D NMR[1H,1H] 2D NMR SpectrumNot Available
2D NMR[1H,13C] 2D NMR SpectrumNot Available
References
References:
  • Allison AC, Eugui EM: Purine metabolism and immunosuppressive effects of mycophenolate mofetil (MMF). Clin Transplant. 1996 Feb;10(1 Pt 2):77-84. Pubmed: 8680053
  • Bangsbo J, Gollnick PD, Graham TE, Juel C, Kiens B, Mizuno M, Saltin B: Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans. J Physiol. 1990 Mar;422:539-59. Pubmed: 2352192
  • Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R., Van Dien, S. J., Rabinowitz, J. D. (2009). "Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli." Nat Chem Biol 5:593-599. Pubmed: 19561621
  • Castro-Gago M, Cid E, Trabazo S, Pavon P, Camina F, Rodriguez-Segade S, Einis Punal J, Rodriguez-Nunez A: Cerebrospinal fluid purine metabolites and pyrimidine bases after brief febrile convulsions. Epilepsia. 1995 May;36(5):471-4. Pubmed: 7614924
  • Green HJ, Grant SM, Phillips SM, Enns DL, Tarnopolsky MA, Sutton JR: Reduced muscle lactate during prolonged exercise following induced plasma volume expansion. Can J Physiol Pharmacol. 1997 Dec;75(12):1280-6. Pubmed: 9534937
  • Ishii, N., Nakahigashi, K., Baba, T., Robert, M., Soga, T., Kanai, A., Hirasawa, T., Naba, M., Hirai, K., Hoque, A., Ho, P. Y., Kakazu, Y., Sugawara, K., Igarashi, S., Harada, S., Masuda, T., Sugiyama, N., Togashi, T., Hasegawa, M., Takai, Y., Yugi, K., Arakawa, K., Iwata, N., Toya, Y., Nakayama, Y., Nishioka, T., Shimizu, K., Mori, H., Tomita, M. (2007). "Multiple high-throughput analyses monitor the response of E. coli to perturbations." Science 316:593-597. Pubmed: 17379776
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Klupp J, Pfitzmann R, Langrehr JM, Neuhaus P: Indications of mycophenolate mofetil in liver transplantation. Transplantation. 2005 Sep 27;80(1 Suppl):S142-6. Pubmed: 16286893
  • McCauley TG, Hamaguchi N, Stanton M: Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Anal Biochem. 2003 Aug 15;319(2):244-50. Pubmed: 12871718
  • McConell G, Snow RJ, Proietto J, Hargreaves M: Muscle metabolism during prolonged exercise in humans: influence of carbohydrate availability. J Appl Physiol. 1999 Sep;87(3):1083-6. Pubmed: 10484580
  • McConell GK, Canny BJ, Daddo MC, Nance MJ, Snow RJ: Effect of carbohydrate ingestion on glucose kinetics and muscle metabolism during intense endurance exercise. J Appl Physiol. 2000 Nov;89(5):1690-8. Pubmed: 11053315
  • McConell GK, Shinewell J, Stephens TJ, Stathis CG, Canny BJ, Snow RJ: Creatine supplementation reduces muscle inosine monophosphate during endurance exercise in humans. Med Sci Sports Exerc. 2005 Dec;37(12):2054-61. Pubmed: 16331129
  • Nakayama Y, Kinoshita A, Tomita M: Dynamic simulation of red blood cell metabolism and its application to the analysis of a pathological condition. Theor Biol Med Model. 2005 May 9;2(1):18. Pubmed: 15882454
  • Pouw EM, Schols AM, van der Vusse GJ, Wouters EF: Elevated inosine monophosphate levels in resting muscle of patients with stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998 Feb;157(2):453-7. Pubmed: 9476857
  • Rodriguez-Nunez A, Cid E, Rodriguez-Garcia J, Camina F, Rodriguez-Segade S, Castro-Gago M: Concentrations of nucleotides, nucleosides, purine bases, oxypurines, uric acid, and neuron-specific enolase in the cerebrospinal fluid of children with sepsis. J Child Neurol. 2001 Sep;16(9):704-6. Pubmed: 11575617
  • Rush JW, MacLean DA, Hultman E, Graham TE: Exercise causes branched-chain oxoacid dehydrogenase dephosphorylation but not AMP deaminase binding. J Appl Physiol. 1995 Jun;78(6):2193-200. Pubmed: 7665417
  • Scott GS, Spitsin SV, Kean RB, Mikheeva T, Koprowski H, Hooper DC: Therapeutic intervention in experimental allergic encephalomyelitis by administration of uric acid precursors. Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16303-8. Epub 2002 Nov 25. Pubmed: 12451183
  • Swart PJ, Beljaars E, Smit C, Pasma A, Schuitemaker H, Meijer DK: Comparative pharmacokinetic, immunologic and hematologic studies on the anti-HIV-1/2 compounds aconitylated and succinylated HSA. J Drug Target. 1996;4(2):109-16. Pubmed: 8894971
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • van Hall G, van der Vusse GJ, Soderlund K, Wagenmakers AJ: Deamination of amino acids as a source for ammonia production in human skeletal muscle during prolonged exercise. J Physiol. 1995 Nov 15;489 ( Pt 1):251-61. Pubmed: 8583409
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
Synthesis Reference: Park, Yeong Hun; Cho, Gwang Myeong; Baek, Min Ji; Hong, Guk Gi; Lee, Jin Nam. Method for preparing 5'-inosinic acid by using microbe capable of over-expressing purC gene. Repub. Korea (2007), 7pp.
Material Safety Data Sheet (MSDS) Download (PDF)
External Links:
ResourceLink
CHEBI ID17202
HMDB IDHMDB00175
Pubchem Compound ID8582
Kegg IDC00130
ChemSpider ID8264
WikipediaInosinic acid
BioCyc IDIMP
EcoCyc IDIMP
Ligand ExpoIMP

Enzymes

General function:
Involved in adenylosuccinate synthase activity
Specific function:
Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first commited step in the biosynthesis of AMP from IMP
Gene Name:
purA
Locus Tag:
PA4938
Molecular weight:
46.8 kDa
Reactions
GTP + IMP + L-aspartate = GDP + phosphate + N(6)-(1,2-dicarboxyethyl)-AMP.
General function:
Involved in hydrolase activity
Specific function:
Nucleotidase with a broad substrate specificity as it can dephosphorylate various ribo- and deoxyribonucleoside 5'- monophosphates and ribonucleoside 3'-monophosphates with highest affinity to 3'-AMP. Also hydrolyzes polyphosphate (exopolyphosphatase activity) with the preference for short-chain- length substrates (P20-25). Might be involved in the regulation of dNTP and NTP pools, and in the turnover of 3'-mononucleotides produced by numerous intracellular RNases (T1, T2, and F) during the degradation of various RNAs. Also plays a significant physiological role in stress-response and is required for the survival of Pseudomonas aeruginosa in stationary growth phase
Gene Name:
surE
Locus Tag:
PA3625
Molecular weight:
26.4 kDa
Reactions
A 5'-ribonucleotide + H(2)O = a ribonucleoside + phosphate.
A 3'-ribonucleotide + H(2)O = a ribonucleoside + phosphate.
(Polyphosphate)(n) + H(2)O = (polyphosphate)(n-1) + phosphate.
General function:
Involved in catalytic activity
Specific function:
Inosine 5'-phosphate + NAD(+) + H(2)O = xanthosine 5'-phosphate + NADH
Gene Name:
guaB
Locus Tag:
PA3770
Molecular weight:
51.7 kDa
Reactions
Inosine 5'-phosphate + NAD(+) + H(2)O = xanthosine 5'-phosphate + NADH.
General function:
Involved in acid phosphatase activity
Specific function:
Dephosphorylates several organic phosphomonoesters and catalyzes the transfer of low-energy phosphate groups from phosphomonoesters to hydroxyl groups of various organic compounds. Preferentially acts on aryl phosphoesters. Might function as a broad-spectrum dephosphorylating enzyme able to scavenge both 3'- and 5'-nucleotides and also additional organic phosphomonoesters
Gene Name:
aphA
Locus Tag:
PA1409
Molecular weight:
38 kDa
Reactions
A phosphate monoester + H(2)O = an alcohol + phosphate.
General function:
Involved in nucleoside-triphosphate diphosphatase activity
Specific function:
Specific function unknown
Gene Name:
mazG
Locus Tag:
PA0935
Molecular weight:
31.2 kDa
Reactions
ATP + H(2)O = AMP + diphosphate.
General function:
Involved in IMP cyclohydrolase activity
Specific function:
10-formyltetrahydrofolate + 5-amino-1-(5- phospho-D-ribosyl)imidazole-4-carboxamide = tetrahydrofolate + 5- formamido-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide
Gene Name:
purH
Locus Tag:
PA4854
Molecular weight:
57.7 kDa
Reactions
10-formyltetrahydrofolate + 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide = tetrahydrofolate + 5-formamido-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide.
IMP + H(2)O = 5-formamido-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide.
General function:
Involved in hydrolase activity
Specific function:
Hydrolyzes O6 atom-containing purine bases deoxyinosine triphosphate (dITP) and xanthosine triphosphate (XTP) as well as 2'-deoxy-N-6-hydroxylaminopurine triposphate (dHAPTP) to nucleotide monophosphate and pyrophosphate. Probably excludes non- standard purines from DNA precursor pool, preventing thus incorporation into DNA and avoiding chromosomal lesions
Gene Name:
rdgB
Locus Tag:
PA0387
Molecular weight:
21.2 kDa
Reactions
A nucleoside triphosphate + H(2)O = a nucleotide + diphosphate.

Transporters