Record Information
Version 1.0
Update Date 1/22/2018 11:54:54 AM
Metabolite IDPAMDB000053
Identification
Name: Formic acid
Description:Formic acid is the simplest carboxylic acid. Formate is an intermediate in normal metabolism. It takes part in the metabolism of one-carbon compounds and its carbon may appear in methyl groups undergoing transmethylation. It is eventually oxidized to carbon dioxide. In nature, formic acid is found in the stings and bites of many insects of the order Hymenoptera, including bees and ants. The principal use of formic acid is as a preservative and antibacterial agent in livestock feed. When sprayed on fresh hay or other silage, it arrests certain decay processes and causes the feed to retain its nutritive value longer.
Structure
Thumb
Synonyms:
  • Add-F
  • Ameisensaure
  • Aminate
  • Aminic acid
  • Bilorin
  • Collo-Bueglatt
  • Collo-Didax
  • Formate
  • Formic acid
  • Formira
  • Formisoton
  • Formylate
  • Formylic acid
  • Hydrogen carboxylate
  • Hydrogen carboxylic acid
  • Methanoate
  • Methanoate monomer
  • Methanoic acid
  • Methanoic acid monomer
  • Myrmicyl
  • Sodium Formate
  • Sodium Formic acid
  • Sybest
  • Wonderbond Hardener M 600L
Chemical Formula: CH2O2
Average Molecular Weight: 46.0254
Monoisotopic Molecular Weight: 46.005479308
InChI Key: BDAGIHXWWSANSR-UHFFFAOYSA-N
InChI:InChI=1S/CH2O2/c2-1-3/h1H,(H,2,3)
CAS number: 64-18-6
IUPAC Name:formic acid
Traditional IUPAC Name: formic acid
SMILES:OC=O
Chemical Taxonomy
Taxonomy DescriptionThis compound belongs to the class of organic compounds known as carboxylic acids. These are compounds containing a carboxylic acid group with the formula -C(=O)OH.
Kingdom Organic compounds
Super ClassOrganic acids and derivatives
Class Carboxylic acids and derivatives
Sub ClassCarboxylic acids
Direct Parent Carboxylic acids
Alternative Parents
Substituents
  • Carboxylic acid
  • Hydrocarbon derivative
  • Organooxygen compound
  • Aliphatic acyclic compound
Molecular Framework Aliphatic acyclic compounds
External Descriptors
Physical Properties
State: Liquid
Charge:-1
Melting point: 8.4 °C
Experimental Properties:
PropertyValueSource
Water Solubility:1000.0 mg/mL [RIDDICK,JA et al. (1986)]PhysProp
LogP:-0.54 [HANSCH,C ET AL. (1995)]PhysProp
Predicted Properties
PropertyValueSource
Water Solubility477.0 mg/mLALOGPS
logP-0.47ALOGPS
logP-0.27ChemAxon
logS1.02ALOGPS
pKa (Strongest Acidic)4.27ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area37.3 Å2ChemAxon
Rotatable Bond Count0ChemAxon
Refractivity8.15 m3·mol-1ChemAxon
Polarizability3.37 Å3ChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations: Cytoplasm
Reactions:
2-Ketobutyric acid + Coenzyme A > Formic acid + Propionyl-CoA
Coenzyme A + Pyruvic acid <> Acetyl-CoA + Formic acid
2 Hydrogen ion + Menaquinone 8 + Formic acid > Menaquinol 8 + Carbon dioxide + Hydrogen ion
2 Hydrogen ion + Ubiquinone-8 + Formic acid > Ubiquinol-8 + Carbon dioxide + Hydrogen ion
Formic acid + Hydrogen ion > Carbon dioxide + Hydrogen (gas)
S-Formylglutathione + Water <> Formic acid + Glutathione + Hydrogen ion
N10-Formyl-THF + Water <> Formic acid + Hydrogen ion + Tetrahydrofolic acid
Guanosine triphosphate + 3 Water <> 2,5-Diamino-6-hydroxy-4-(5-phosphoribosylamino)pyrimidine + Formic acid +2 Hydrogen ion + Pyrophosphate + 2,5-diamino-6-hydroxy-4-(5-phospho-D-ribosylamino)pyrimidine
Adenosine triphosphate + Formic acid + Glycineamideribotide > ADP + 5'-Phosphoribosyl-N-formylglycineamide + Hydrogen ion + Phosphate
Guanosine triphosphate + Water > Dihydroneopterin triphosphate + Formic acid + Hydrogen ion
Water + Undecaprenyl phosphate-4-amino-4-formyl-L-arabinose > Formic acid + undecaprenyl phosphate-4-amino-4-deoxy-L-arabinose
Formyl-CoA + Oxalic acid <> Formic acid + Oxalyl-CoA
D-Ribulose 5-phosphate <> 3,4-Dihydroxy-2-butanone-4-P + Formic acid + Hydrogen ion
5-Aminoimidazole ribonucleotide + Water + NAD > 4-Amino-2-methyl-5-phosphomethylpyrimidine +2 Formic acid +3 Hydrogen ion + NADH
Guanosine triphosphate + 3 Water <> Formic acid + 2,5-Diamino-6-hydroxy-4-(5-phosphoribosylamino)pyrimidine + Pyrophosphate
Formic acid + NAD <> Hydrogen ion + Carbon dioxide + NADH
S-Formylglutathione + Water <> Formic acid + Glutathione
N10-Formyl-THF + Water <> Formic acid + Tetrahydrofolic acid
4-Amino-5-hydroxymethyl-2-methylpyrimidine + S-Adenosylmethionine <> 5-Aminoimidazole ribonucleotide + 4-Amino-2-methyl-5-phosphomethylpyrimidine + 5'-Deoxyadenosine + L-Methionine + Formic acid + CO
Formamidopyrimidine nucleoside triphosphate + Water <> 2,5-Diaminopyrimidine nucleoside triphosphate + Formic acid
D-Ribulose 5-phosphate <> 3,4-Dihydroxy-2-butanone-4-P + Formic acid
4-deoxy-4-formamido-&alpha;-L-arabinopyranosyl <i>ditrans,octacis</i>-undecaprenyl phosphate + Water > 4-amino-4-deoxy-&alpha;-L-arabinopyranosyl <i>ditrans,octacis</i>-undecaprenyl phosphate + Formic acid
Water + formyl-L-methionyl peptide > Hydrogen ion + methionyl peptide + Formic acid
Formic acid + Hydrogen ion + a menaquinone > Hydrogen ion + Carbon dioxide + a menaquinol
Adenosine triphosphate + Formic acid + Tetrahydrofolic acid > ADP + Phosphate + N10-Formyl-THF
Water + Guanosine triphosphate > Hydrogen ion + Pyrophosphate + 2,5-Diamino-6-hydroxy-4-(5-phosphoribosylamino)pyrimidine + Formic acid
5-Aminoimidazole ribonucleotide + S-Adenosylmethionine 4-Amino-2-methyl-5-phosphomethylpyrimidine + 5'-Deoxyadenosine + L-Methionine + Formic acid + carbon monoxide + Hydrogen ion
Formic acid + an oxidized electron acceptor + Hydrogen ion > Carbon dioxide + a reduced electron acceptor
4-deoxy-4-formamido-beta-L-arabinose di-trans,poly-cis-undecaprenyl phosphate + Water > 4-amino-4-deoxy-alpha-L-arabinose di-trans,poly-cis-undecaprenyl phosphate + Formic acid
Formyl-L-methionyl peptide + Water > Formic acid + methionyl peptide
Formic acid + NAD > Carbon dioxide + NADH
Formic acid + acceptor > Carbon dioxide + reduced acceptor
Guanosine triphosphate + Water > Formic acid + 2-amino-4-hydroxy-6-(erythro-1,2,3-trihydroxypropyl)-dihydropteridine triphosphate
Formic acid + Adenosine triphosphate + 5'-Phospho-ribosylglycinamide > 5'-Phosphoribosyl-N-formylglycineamide + ADP + Pyrophosphate
D-Ribulose 5-phosphate > Formic acid + 1-Deoxy-L-glycero-tetrulose 4-phosphate
Formic acid + Quinone <> Carbon dioxide + Hydroquinone
Guanosine triphosphate + Water <> Formic acid + Dihydroneopterin triphosphate
N1-(5-phospho-β-D-ribosyl)glycinamide + Adenosine triphosphate + Formic acid > 5'-Phosphoribosyl-N-formylglycinamide + Adenosine diphosphate + Phosphate + Hydrogen ion + 5'-Phosphoribosyl-N-formylglycineamide + ADP
Formic acid + Tetrahydrofolic acid + Tetrahydrofolic acid > Water + 10-Formyltetrahydrofolate + N10-Formyl-THF
Guanosine triphosphate + Water > Formic acid + Hydrogen ion + 7,8-dihydroneopterin 3'-triphosphate
2-Ketobutyric acid + Coenzyme A > Formic acid + Propionyl-CoA + Propionyl-CoA
D-Ribulose 5-phosphate > 1-Deoxy-L-glycero-tetrulose 4-phosphate + Formic acid + Hydrogen ion
Formic acid + menaquinone-8 + Electron + Hydrogen ion > Carbon dioxide + Hydrogen ion + Menaquinol 8
Guanosine triphosphate + 3 Water > Formic acid + Pyrophosphate +2 Hydrogen ion + 2,5-Diamino-6-(5'-phosphoribosylamino)-4-pyrimidineone
More...

Pathways:
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-MSNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0002-9000000000-092f816e62c8d2f5d56eView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0002-9000000000-092f816e62c8d2f5d56eView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0002-9000000000-092f816e62c8d2f5d56eView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0006-9000000000-eb2207f7400e9144fff7View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0006-9000000000-eb2207f7400e9144fff7View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0006-9000000000-eb2207f7400e9144fff7View in MoNA
MSMass Spectrum (Electron Ionization)splash10-004j-9000000000-2e63b0c1e2e417b0d747View in MoNA
1D NMR1H NMR SpectrumNot Available
1D NMR13C NMR SpectrumNot Available
1D NMR1H NMR SpectrumNot Available
1D NMR13C NMR SpectrumNot Available
1D NMR1H NMR SpectrumNot Available
1D NMR13C NMR SpectrumNot Available
2D NMR[1H,1H] 2D NMR SpectrumNot Available
2D NMR[1H,13C] 2D NMR SpectrumNot Available
References
References:
  • Bales JR, Higham DP, Howe I, Nicholson JK, Sadler PJ: Use of high-resolution proton nuclear magnetic resonance spectroscopy for rapid multi-component analysis of urine. Clin Chem. 1984 Mar;30(3):426-32. Pubmed: 6321058
  • Baumann K, Angerer J: Occupational chronic exposure to organic solvents. VI. Formic acid concentration in blood and urine as an indicator of methanol exposure. Int Arch Occup Environ Health. 1979 Jan 15;42(3-4):241-9. Pubmed: 422265
  • Berode M, Sethre T, Laubli T, Savolainen H: Urinary methanol and formic acid as indicators of occupational exposure to methyl formate. Int Arch Occup Environ Health. 2000 Aug;73(6):410-4. Pubmed: 11007345
  • Bloomer JC, Clarke SE, Chenery RJ: Determination of P4501A2 activity in human liver microsomes using [3-14C-methyl]caffeine. Xenobiotica. 1995 Sep;25(9):917-27. Pubmed: 8553685
  • D'Andrea MR, Reiser PA, Polkovitch DA, Gumula NA, Branchide B, Hertzog BM, Schmidheiser D, Belkowski S, Gastard MC, Andrade-Gordon P: The use of formic acid to embellish amyloid plaque detection in Alzheimer's disease tissues misguides key observations. Neurosci Lett. 2003 May 15;342(1-2):114-8. Pubmed: 12727331
  • Dal Pra I, Chiarini A, Boschi A, Freddi G, Armato U: Novel dermo-epidermal equivalents on silk fibroin-based formic acid-crosslinked three-dimensional nonwoven devices with prospective applications in human tissue engineering/regeneration/repair. Int J Mol Med. 2006 Aug;18(2):241-7. Pubmed: 16820930
  • Dunne VG, Bhattachayya S, Besser M, Rae C, Griffin JL: Metabolites from cerebrospinal fluid in aneurysmal subarachnoid haemorrhage correlate with vasospasm and clinical outcome: a pattern-recognition 1H NMR study. NMR Biomed. 2005 Feb;18(1):24-33. Pubmed: 15455468
  • Ferrari LA, Arado MG, Nardo CA, Giannuzzi L: Post-mortem analysis of formic acid disposition in acute methanol intoxication. Forensic Sci Int. 2003 Apr 23;133(1-2):152-8. Pubmed: 12742704
  • Ferry DG, Temple WA, McQueen EG: Methanol monitoring. Comparison of urinary methanol concentration with formic acid excretion rate as a measure of occupational exposure. Int Arch Occup Environ Health. 1980;47(2):155-63. Pubmed: 7440001
  • Foulon V, Sniekers M, Huysmans E, Asselberghs S, Mahieu V, Mannaerts GP, Van Veldhoven PP, Casteels M: Breakdown of 2-hydroxylated straight chain fatty acids via peroxisomal 2-hydroxyphytanoyl-CoA lyase: a revised pathway for the alpha-oxidation of straight chain fatty acids. J Biol Chem. 2005 Mar 18;280(11):9802-12. Epub 2005 Jan 11. Pubmed: 15644336
  • Grady S, Osterloh J: Improved enzymic assay for serum formate with colorimetric endpoint. J Anal Toxicol. 1986 Jan-Feb;10(1):1-5. Pubmed: 3754027
  • Igeta Y, Kawarabayashi T, Sato M, Yamada N, Matsubara E, Ishiguro K, Kanai M, Tomidokoro Y, Osuga J, Okamoto K, Hirai S, Shoji M: Apolipoprotein E accumulates with the progression of A beta deposition in transgenic mice. J Neuropathol Exp Neurol. 1997 Nov;56(11):1228-35. Pubmed: 9370233
  • Iwamoto N, Nishiyama E, Ohwada J, Arai H: Distribution of amyloid deposits in the cerebral white matter of the Alzheimer's disease brain: relationship to blood vessels. Acta Neuropathol (Berl). 1997 Apr;93(4):334-40. Pubmed: 9113198
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Kerns W 2nd, Tomaszewski C, McMartin K, Ford M, Brent J: Formate kinetics in methanol poisoning. J Toxicol Clin Toxicol. 2002;40(2):137-43. Pubmed: 12126185
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Lehmann P, Kligman AM: In vivo removal of the horny layer with formic acid. Br J Dermatol. 1983 Sep;109(3):313-20. Pubmed: 6615718
  • Nagasawa H, Wada M, Koyama S, Kawanami T, Kurita K, Kato T: [A case of methanol intoxication with optic neuropathy visualized on STIR sequence of MR images] Rinsho Shinkeigaku. 2005 Jul;45(7):527-30. Pubmed: 16119839
  • Nicholson JK, Foxall PJ, Spraul M, Farrant RD, Lindon JC: 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Anal Chem. 1995 Mar 1;67(5):793-811. Pubmed: 7762816
  • Ohmori S, Sumii I, Toyonaga Y, Nakata K, Kawase M: High-performance liquid chromatographic determination of formate as benzimidazole in biological samples. J Chromatogr. 1988 Apr 8;426(1):15-24. Pubmed: 3384868
  • Tasaka Y, Nakaya F, Matsumoto H, Iwamoto Y, Omori Y: Pancreatic amylin content in human diabetic subjects and its relation to diabetes. Pancreas. 1995 Oct;11(3):303-8. Pubmed: 8577686
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
Synthesis Reference: Finholt, Albert E.; Jacobson, Eugene C. The reduction of carbon dioxide to formic acid with lithium aluminum hydride. Journal of the American Chemical Society (1952), 74 3943-4.
Material Safety Data Sheet (MSDS) Download (PDF)
External Links:
ResourceLink
CHEBI ID15740
HMDB IDHMDB00142
Pubchem Compound ID284
Kegg IDC00058
ChemSpider ID278
WikipediaFormic acid
BioCyc IDFORMATE
EcoCyc IDFORMATE
Ligand ExpoFMT

Enzymes

General function:
Involved in iron ion binding
Specific function:
Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions
Gene Name:
def
Locus Tag:
PA0019
Molecular weight:
19.4 kDa
Reactions
Formyl-L-methionyl peptide + H(2)O = formate + methionyl peptide.
General function:
Involved in GTP cyclohydrolase II activity
Specific function:
Catalyzes the conversion of GTP to 2,5-diamino-6- ribosylamino-4(3H)-pyrimidinone 5'-phosphate (DARP), formate and pyrophosphate
Gene Name:
ribA
Locus Tag:
PA4047
Molecular weight:
22.1 kDa
Reactions
GTP + 3 H(2)O = formate + 2,5-diamino-6-hydroxy-4-(5-phospho-D-ribosylamino)pyrimidine + diphosphate.
General function:
Involved in 3,4-dihydroxy-2-butanone-4-phosphate synthase activity
Specific function:
Catalyzes the conversion of D-ribulose 5-phosphate to formate and 3,4-dihydroxy-2-butanone 4-phosphate
Gene Name:
ribB
Locus Tag:
PA4054
Molecular weight:
39.4 kDa
Reactions
D-ribulose 5-phosphate = formate + L-3,4-dihydroxybutan-2-one 4-phosphate.
General function:
Involved in electron carrier activity
Specific function:
Formate dehydrogenase allows Pseudomonas aeruginosa to use formate as major electron donor during anaerobic respiration, when nitrate is used as electron acceptor. The beta chain is an electron transfer unit containing 4 cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit
Gene Name:
fdnH
Locus Tag:
PA4811
Molecular weight:
33.8 kDa
General function:
Involved in respiratory electron transport chain
Specific function:
Formate dehydrogenase allows Pseudomonas aeruginosa to use formate as major electron donor during anaerobic respiration, when nitrate is used as electron acceptor. Subunit gamma is the cytochrome b556(FDN) component of the formate dehydrogenase
Gene Name:
fdnI
Locus Tag:
PA4810
Molecular weight:
23.9 kDa
General function:
Involved in formate dehydrogenase (NAD+) activity
Specific function:
Formate dehydrogenase allows Pseudomonas aeruginosa to use formate as major electron donor during anaerobic respiration, when nitrate is used as electron acceptor. The alpha subunit forms the active site
Gene Name:
fdnG
Locus Tag:
PA4812
Molecular weight:
104.7 kDa
Reactions
Formate + NAD(+) = CO(2) + NADH.
General function:
Involved in carboxylesterase activity
Specific function:
Serine hydrolase involved in the detoxification of formaldehyde. Hydrolyzes S-formylglutathione to glutathione and formate. Shows also esterase activity against alpha-naphthyl acetate, lactoylglutathione, palmitoyl-CoA and several pNP-esters of short chain fatty acids
Gene Name:
yeiG
Locus Tag:
PA3628
Molecular weight:
31.2 kDa
Reactions
S-formylglutathione + H(2)O = glutathione + formate.
General function:
Involved in ATP binding
Specific function:
Catalyzes two reactions:the first one is the production of beta-formyl glycinamide ribonucleotide (GAR) from formate, ATP and beta GAR; the second, a side reaction, is the production of acetyl phosphate and ADP from acetate and ATP
Gene Name:
purT
Locus Tag:
PA3751
Molecular weight:
42.3 kDa
Reactions
Formate + ATP + 5'-phospho-ribosylglycinamide = 5'-phosphoribosyl-N-formylglycinamide + ADP + diphosphate.
General function:
Involved in hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in linear amides
Specific function:
Catalyzes the deformylation of 4-deoxy-4-formamido-L- arabinose-phosphoundecaprenol to 4-amino-4-deoxy-L-arabinose- phosphoundecaprenol. The modified arabinose is attached to lipid A and is required for resistance to polymyxin and cationic antimicrobial peptides (Probable)
Gene Name:
arnD
Locus Tag:
PA3555
Molecular weight:
32.9 kDa
Reactions
4-deoxy-4-formamido-beta-L-arabinose di-trans,poly-cis-undecaprenyl phosphate + H(2)O = 4-amino-4-deoxy-alpha-L-arabinose di-trans,poly-cis-undecaprenyl phosphate + formate.
General function:
Involved in thiamine biosynthetic process
Specific function:
Catalyzes the synthesis of the hydroxymethylpyrimidine phosphate (HMP-P) moiety of thiamine from aminoimidazole ribotide (AIR) in a radical S-adenosyl-L-methionine (SAM)-dependent reaction
Gene Name:
thiC
Locus Tag:
PA4973
Molecular weight:
69.8 kDa
Reactions
5-amino-1-(5-phospho-D-ribosyl)imidazole + S-adenosyl-L-methionine = 4-amino-2-methyl-5-phosphomethylpyrimidine + 5'-deoxyadenosine + L-methionine + formate + CO.

Transporters