Record Information
Version 1.0
Update Date 1/22/2018 12:54:54 PM
Metabolite IDPAMDB000217
Name: Acetaldehyde
Description:Acetaldehyde is a colorless, flammable liquid used in the manufacture of acetic acid, perfumes, and flavors. It is also an intermediate in the metabolism of alcohol. Small amounts of acetaldehyde are produced naturally through gut microbial fermentation. Acetaldehyde is produced through the action of alcohol dehydrogenase on ethanol and is somewhate more toxic than ethanol.
  • Acetaldehyde
  • Acetic aldehyde
  • Aldehyde
  • Ethanal
  • Ethyl aldehyde
Chemical Formula: C2H4O
Average Molecular Weight: 44.0526
Monoisotopic Molecular Weight: 44.02621475
CAS number: 75-07-0
IUPAC Name:acetaldehyde
Traditional IUPAC Name: acetaldehyde
Chemical Taxonomy
Taxonomy DescriptionThis compound belongs to the class of organic compounds known as short-chain aldehydes. These are an aldehyde with a chain length containing between 2 and 5 carbon atoms.
Kingdom Organic compounds
Super ClassOrganooxygen compounds
Class Carbonyl compounds
Sub ClassAldehydes
Direct Parent Short-chain aldehydes
Alternative Parents
  • Hydrocarbon derivative
  • Short-chain aldehyde
  • Aliphatic acyclic compound
Molecular Framework Aliphatic acyclic compounds
External Descriptors
Physical Properties
State: Liquid
Melting point: -123 °C
Experimental Properties:
Water Solubility:1000.0 mg/mL [RIDDICK,JA et al. (1986)]PhysProp
LogP:-0.34 [TSCATS]PhysProp
Predicted Properties
Water Solubility225.0 mg/mLALOGPS
pKa (Strongest Acidic)14.5ChemAxon
pKa (Strongest Basic)-6.9ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area17.07 Å2ChemAxon
Rotatable Bond Count0ChemAxon
Refractivity11.72 m3·mol-1ChemAxon
Polarizability4.48 Å3ChemAxon
Number of Rings0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations: Cytoplasm
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-MSNot Available
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-0002-9000000000-f1274d4b6066776ca898View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-001l-9000000000-c1e37abbf2ad6054dc10View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-000t-9000000000-2289ead4f7210282cd87View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0002-9000000000-cf54221d95714f5478c4View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0002-9000000000-8d8afe7422ae76f7ebb9View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-004j-9000000000-d68dec9f846cfe9acc72View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0006-9000000000-4430d6a790eca4132aa4View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0006-9000000000-607a755de038203a6b68View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0006-9000000000-63c9f623d8dc4b1e60a2View in MoNA
MSMass Spectrum (Electron Ionization)splash10-002f-9000000000-65d53ef91644a0bacd6cView in MoNA
1D NMR1H NMR SpectrumNot Available
1D NMR13C NMR SpectrumNot Available
1D NMR1H NMR SpectrumNot Available
  • Boyden TW, Silvert MA, Pamenter RW: Acetaldehyde acutely impairs canine testicular testosterone secretion. Eur J Pharmacol. 1981 Apr 9;70(4):571-6. Pubmed: 7195339
  • Brooks PJ, Theruvathu JA: DNA adducts from acetaldehyde: implications for alcohol-related carcinogenesis. Alcohol. 2005 Apr;35(3):187-93. Pubmed: 16054980
  • Burton A: Acetaldehyde links alcohol consumption to cancer. Lancet Oncol. 2005 Sep;6(9):643. Pubmed: 16161263
  • Deitrich RA: Acetaldehyde: deja vu du jour. J Stud Alcohol. 2004 Sep;65(5):557-72. Pubmed: 15536764
  • Forn-Frias C, Sanchis-Segura C: [The possible role of acetaldehyde in the brain damage caused by the chronic consumption of alcohol] Rev Neurol. 2003 Sep 1-15;37(5):485-93. Pubmed: 14533100
  • Hard ML, Iqbal U, Brien JF, Koren G: Binding of acetaldehyde to human and Guinea pig placentae in vitro. Placenta. 2003 Feb-Mar;24(2-3):149-54. Pubmed: 12566241
  • Higuchi S, Matsushita S, Masaki T, Yokoyama A, Kimura M, Suzuki G, Mochizuki H: Influence of genetic variations of ethanol-metabolizing enzymes on phenotypes of alcohol-related disorders. Ann N Y Acad Sci. 2004 Oct;1025:472-80. Pubmed: 15542751
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Latvala J, Melkko J, Parkkila S, Jarvi K, Makkonen K, Niemela O: Assays for acetaldehyde-derived adducts in blood proteins based on antibodies against acetaldehyde/lipoprotein condensates. Alcohol Clin Exp Res. 2001 Nov;25(11):1648-53. Pubmed: 11707639
  • Mascia MP, Maiya R, Borghese CM, Lobo IA, Hara K, Yamakura T, Gong DH, Beckstead MJ: Does acetaldehyde mediate ethanol action in the central nervous system? Alcohol Clin Exp Res. 2001 Nov;25(11):1570-5. Pubmed: 11707631
  • Matsuse H, Shimoda T, Fukushima C, Mitsuta K, Kawano T, Tomari S, Saeki S, Kondoh Y, Machida I, Obase Y, Asai S, Kohno S: Screening for acetaldehyde dehydrogenase 2 genotype in alcohol-induced asthma by using the ethanol patch test. J Allergy Clin Immunol. 2001 Nov;108(5):715-9. Pubmed: 11692094
  • Morozov IuE, Salomatin EM, Okhotin VE: [Brain acetaldehyde and ethanol: method of determination and diagnostic significance in ethanol poisoning] Sud Med Ekspert. 2002 Mar-Apr;45(2):35-40. Pubmed: 12063798
  • Nakamura K, Iwahashi K, Furukawa A, Ameno K, Kinoshita H, Ijiri I, Sekine Y, Suzuki K, Iwata Y, Minabe Y, Mori N: Acetaldehyde adducts in the brain of alcoholics. Arch Toxicol. 2003 Oct;77(10):591-3. Epub 2003 Sep 17. Pubmed: 14574447
  • Nishimura FT, Fukunaga T, Kajiura H, Umeno K, Takakura H, Ono T, Nishijo H: Effects of aldehyde dehydrogenase-2 genotype on cardiovascular and endocrine responses to alcohol in young Japanese subjects. Auton Neurosci. 2002 Nov 29;102(1-2):60-70. Pubmed: 12492137
  • Oba T, Maeno Y, Ishida K: Differential contribution of clinical amounts of acetaldehyde to skeletal and cardiac muscle dysfunction in alcoholic myopathy. Curr Pharm Des. 2005;11(6):791-80. Pubmed: 15777233
  • Takeuchi M, Saito T: Cytotoxicity of acetaldehyde-derived advanced glycation end-products (AA-AGE) in alcoholic-induced neuronal degeneration. Alcohol Clin Exp Res. 2005 Dec;29(12 Suppl):220S-4S. Pubmed: 16385226
  • Takeuchi M, Watai T, Sasaki N, Choei H, Iwaki M, Ashizawa T, Inagaki Y, Yamagishi S, Kikuchi S, Riederer P, Saito T, Bucala R, Kameda Y: Neurotoxicity of acetaldehyde-derived advanced glycation end products for cultured cortical neurons. J Neuropathol Exp Neurol. 2003 May;62(5):486-96. Pubmed: 12769188
  • Theruvathu JA, Jaruga P, Nath RG, Dizdaroglu M, Brooks PJ: Polyamines stimulate the formation of mutagenic 1,N2-propanodeoxyguanosine adducts from acetaldehyde. Nucleic Acids Res. 2005 Jun 21;33(11):3513-20. Print 2005. Pubmed: 15972793
  • Tyulina OV, Prokopieva VD, Boldyrev AA, Johnson P: Erythrocyte and plasma protein modification in alcoholism: a possible role of acetaldehyde. Biochim Biophys Acta. 2006 May;1762(5):558-63. Epub 2006 Apr 3. Pubmed: 16630710
  • Tyulina OV, Prokopieva VD, Dodd RD, Hawkins JR, Clay SW, Wilson DO, Boldyrev AA, Johnson P: In vitro effects of ethanol, acetaldehyde and fatty acid ethyl esters on human erythrocytes. Alcohol Alcohol. 2002 Mar-Apr;37(2):179-86. Pubmed: 11912075
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
  • Yokoyama T, Saito K, Lwin H, Yoshiike N, Yamamoto A, Matsushita Y, Date C, Tanaka H: Epidemiological evidence that acetaldehyde plays a significant role in the development of decreased serum folate concentration and elevated mean corpuscular volume in alcohol drinkers. Alcohol Clin Exp Res. 2005 Apr;29(4):622-30. Pubmed: 15834228
Synthesis Reference: Wertheim, E. Laboratory preparation of acetaldehyde. Journal of the American Chemical Society (1922), 44 2658-9.
Material Safety Data Sheet (MSDS) Download (PDF)
External Links:
Pubchem Compound ID177
Kegg IDC00084
ChemSpider ID172
Ligand ExpoMCB


General function:
Involved in catalytic activity
Specific function:
Interconversion of serine and glycine
Gene Name:
Locus Tag:
Molecular weight:
45.2 kDa
5,10-methylenetetrahydrofolate + glycine + H(2)O = tetrahydrofolate + L-serine.
General function:
Involved in catalytic activity
Specific function:
Ethanolamine = acetaldehyde + NH(3)
Gene Name:
Locus Tag:
Molecular weight:
50.2 kDa
Ethanolamine = acetaldehyde + NH(3).
General function:
Involved in oxidoreductase activity
Specific function:
Involved in the breakdown of putrescine. Was previously shown to have a weak but measurable ALDH enzyme activity that prefers NADP over NAD as coenzyme
Gene Name:
Locus Tag:
Molecular weight:
53.1 kDa
Gamma-glutamyl-gamma-aminobutyraldehyde + NAD(+) + H(2)O = gamma-glutamyl-gamma-aminobutyrate + NADH.
An aldehyde + NAD(P)(+) + H(2)O = a carboxylate + NAD(P)H.
General function:
Involved in zinc ion binding
Specific function:
Has high formaldehyde dehydrogenase activity in the presence of glutathione and catalyzes the oxidation of normal alcohols in a reaction that is not GSH-dependent. In addition, hemithiolacetals other than those formed from GSH, including omega-thiol fatty acids, also are substrates
Gene Name:
Locus Tag:
Molecular weight:
39.2 kDa
S-(hydroxymethyl)glutathione + NAD(P)(+) = S-formylglutathione + NAD(P)H.
An alcohol + NAD(+) = an aldehyde or ketone + NADH.
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the NADP-dependent oxidation of diverse aldehydes such as chloroacetaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, mafosfamide, 4- hydroperoxycyclophosphamide. Its preferred substrates are acetaldehyde and chloroacetaldehyde
Gene Name:
Locus Tag:
Molecular weight:
54.9 kDa
General function:
Coenzyme transport and metabolism
Specific function:
Catalyzes the conversion of 7,8-dihydroneopterin triphosphate (H2NTP) to 6-carboxy-5,6,7,8-tetrahydropterin (CPH4) and acetaldehyde. Can also convert 6-pyruvoyltetrahydropterin (PPH4) and sepiapterin to CPH4; these 2 compounds are probably intermediates in the reaction from H2NTP
Gene Name:
Locus Tag:
Molecular weight:
13.8 kDa
7,8-dihydroneopterin 3'-triphosphate + H(2)O = 6-carboxy-5,6,7,8-tetrahydropterin + acetaldehyde + triphosphate.
General function:
Involved in lyase activity
Specific function:
Catalyzes the cleavage of L-allo-threonine and L- threonine to glycine and acetaldehyde. L-threo-phenylserine and L- erythro-phenylserine are also good substrates
Gene Name:
Locus Tag:
Molecular weight:
35.4 kDa
L-threonine = glycine + acetaldehyde.
L-allo-threonine = glycine + acetaldehyde.
General function:
Involved in alkanesulfonate monooxygenase activity
Specific function:
Involved in desulfonation of aliphatic sulfonates. Catalyzes the conversion of pentanesulfonic acid to sulfite and pentaldehyde and is able to desulfonate a wide range of sulfonated substrates including C-2 to C-10 unsubstituted linear alkanesulfonates, substituted ethanesulfonic acids and sulfonated buffers
Gene Name:
Locus Tag:
Molecular weight:
41.6 kDa
An alkanesufonate (R-CH(2)-SO(3)H) + FMNH(2) + O(2) = an aldehyde (R-CHO) + FMN + sulfite + H(2)O.