Record Information
Version 1.0
Update Date 1/22/2018 11:54:54 AM
Metabolite IDPAMDB000308
Identification
Name: FAD
Description:Flavine Adenine Dinucleotide (FAD) is a condensation product of riboflavin and adenosine diphosphate. FAD is a redox cofactor involved in several important reactions in metabolism. It can exist in two different redox states, (FAD and FADH2) which it converts between by accepting or donating electrons. It is a coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972)
Structure
Thumb
Synonyms:
  • 1H-Purin-6-amine flavin dinucleotide
  • 1H-Purin-6-amine flavine dinucleotide
  • Adenine-flavin dinucleotide
  • Adenine-flavine dinucleotide
  • Adenine-riboflavin dinuceotide
  • Adenine-riboflavin dinucleotide
  • Adenine-riboflavine dinucleotide
  • FAD
  • Flamitajin B
  • Flanin F
  • Flavin adenine dinucleotide
  • Flavin adenine dinucleotide oxidized
  • Flavin-adenine dinucleotide
  • Flavine adenosine diphosphate
  • Flavine adenosine diphosphoric acid
  • Flavine-adenine dinucleotide
  • Flavitan
  • Flaziren
  • Isoalloxazine-adenine dinucleotide
  • Riboflavin 5'-adenosine diphosphate
  • Riboflavin 5'-adenosine diphosphoric acid
  • Riboflavin-adenine dinucleotide
  • Riboflavine-adenine dinucleotide
Chemical Formula: C27H33N9O15P2
Average Molecular Weight: 785.5497
Monoisotopic Molecular Weight: 785.157134455
InChI Key: VWWQXMAJTJZDQX-UYBVJOGSSA-N
InChI:InChI=1S/C27H33N9O15P2/c1-10-3-12-13(4-11(10)2)35(24-18(32-12)25(42)34-27(43)33-24)5-14(37)19(39)15(38)6-48-52(44,45)51-53(46,47)49-7-16-20(40)21(41)26(50-16)36-9-31-17-22(28)29-8-30-23(17)36/h3-4,8-9,14-16,19-21,26,37-41H,5-7H2,1-2H3,(H,44,45)(H,46,47)(H2,28,29,30)(H,34,42,43)/t14-,15+,16+,19-,20+,21+,26+/m0/s1
CAS number: 146-14-5
IUPAC Name:[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]({[(2R,3S,4S)-5-{7,8-dimethyl-2,4-dioxo-2H,3H,4H,10H-benzo[g]pteridin-10-yl}-2,3,4-trihydroxypentyl]oxy})phosphinic acid
Traditional IUPAC Name: flavine-adenine dinucleotide
SMILES:CC1=CC2=C(C=C1C)N(C[C@H](O)[C@H](O)[C@H](O)CO[P@](O)(=O)O[P@@](O)(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1O)N1C=NC3=C1N=CN=C3N)C1=NC(=O)NC(=O)C1=N2
Chemical Taxonomy
Taxonomy DescriptionThis compound belongs to the class of organic compounds known as flavin nucleotides. These are nucleotides containing a flavin moiety. Flavin is a compound that contains the tricyclic isoalloxazine ring system, which bears 2 oxo groups at the 2- and 4-positions.
Kingdom Organic compounds
Super ClassNucleosides, nucleotides, and analogues
Class Flavin nucleotides
Sub ClassNot Available
Direct Parent Flavin nucleotides
Alternative Parents
Substituents
  • Flavin nucleotide
  • Purine ribonucleoside diphosphate
  • Flavin
  • Isoalloxazine
  • N-glycosyl compound
  • Glycosyl compound
  • Quinoxaline
  • Pteridine
  • Organic pyrophosphate
  • Monosaccharide phosphate
  • 6-aminopurine
  • Purine
  • Imidazopyrimidine
  • Monoalkyl phosphate
  • Pyrimidone
  • Aminopyrimidine
  • Imidolactam
  • Benzenoid
  • Alkyl phosphate
  • Pyrimidine
  • Pyrazine
  • Primary aromatic amine
  • Phosphoric acid ester
  • Organic phosphoric acid derivative
  • Organic phosphate
  • N-substituted imidazole
  • Monosaccharide
  • Saccharide
  • Heteroaromatic compound
  • Vinylogous amide
  • Oxolane
  • Imidazole
  • Azole
  • Secondary alcohol
  • Polyol
  • Lactam
  • 1,2-diol
  • Oxacycle
  • Azacycle
  • Organoheterocyclic compound
  • Hydrocarbon derivative
  • Primary amine
  • Organooxygen compound
  • Organonitrogen compound
  • Amine
  • Alcohol
  • Aromatic heteropolycyclic compound
Molecular Framework Aromatic heteropolycyclic compounds
External Descriptors
Physical Properties
State: Solid
Charge:-3
Melting point: Not Available
Experimental Properties:
PropertyValueSource
Water Solubility:5 mg/mL [HMP experimental]PhysProp
Predicted Properties
PropertyValueSource
Water Solubility4.25 mg/mLALOGPS
logP-0.78ALOGPS
logP-5.3ChemAxon
logS-2.3ALOGPS
pKa (Strongest Acidic)1.86ChemAxon
pKa (Strongest Basic)4.99ChemAxon
Physiological Charge-3ChemAxon
Hydrogen Acceptor Count19ChemAxon
Hydrogen Donor Count9ChemAxon
Polar Surface Area356.42 Å2ChemAxon
Rotatable Bond Count13ChemAxon
Refractivity177.43 m3·mol-1ChemAxon
Polarizability70.62 Å3ChemAxon
Number of Rings6ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations: Cytoplasm
Reactions:
FADH2 + 2 Hydrogen ion + SufBCD with two bound [2Fe-2S] clusters > FAD + SufBCD with bound [4Fe-4S] cluster
FAD + Hydrogen ion + NADPH > FADH2 + NADP
Adenosine triphosphate + FADH2 + 2 Iron + Water + SufBCD scaffold complex + 2 SufSE with bound sulfur > ADP + FAD +7 Hydrogen ion + Phosphate + SufBCD with bound [2Fe-2S] cluster +2 SufSE sulfur acceptor complex
Adenosine triphosphate + FADH2 + 2 Iron + Water + SufBCD with bound [2Fe-2S] cluster + 2 SufSE with bound sulfur > ADP + FAD +7 Hydrogen ion + Phosphate + SufBCD with two bound [2Fe-2S] clusters +2 SufSE sulfur acceptor complex
FADH2 + 2 Iron + 2 IscS with bound sulfur + IscU scaffold protein > FAD +6 Hydrogen ion +2 IscS sulfur acceptor protein + IscU with bound [2Fe-2S] cluster
FADH2 + 2 Iron + 2 IscS with bound sulfur + IscU with bound [2Fe-2S] cluster > FAD +6 Hydrogen ion +2 IscS sulfur acceptor protein + IscU with two bound [2Fe-2S] clusters
Adenosine triphosphate + Flavin Mononucleotide + Hydrogen ion > FAD + Pyrophosphate
Butyryl-CoA + FAD <> Crotonoyl-CoA + FADH2
FAD + Octanoyl-CoA <> FADH2 + (2E)-Octenoyl-CoA
FAD + Palmityl-CoA <> FADH2 + (2E)-Hexadecenoyl-CoA
FAD + Tetradecanoyl-CoA <> FADH2 + (2E)-Tetradecenoyl-CoA
FAD + Hexanoyl-CoA <> FADH2 + trans-2-Hexenoyl-CoA
FAD + Stearoyl-CoA <> FADH2 + Trans-Octadec-2-enoyl-CoA
Lauroyl-CoA + FAD <> (2E)-Dodecenoyl-CoA + FADH2
Decanoyl-CoA (N-C10:0CoA) + FAD <> (2E)-Decenoyl-CoA + FADH2
FAD + L-Proline > L-D-1-Pyrroline-5-carboxylic acid + FADH2 + Hydrogen ion
D-Alanine + FAD + Water > FADH2 + Ammonium + Pyruvic acid
FADH2 + 2 Hydrogen ion + IscU with two bound [2Fe-2S] clusters > FAD + IscU with bound [4Fe-4S] cluster
FADH2 + 2 Fe3+ > FAD +2 Iron +2 Hydrogen ion
FAD + Hydrogen ion + NADH > FADH2 + NAD
FADH2 + 2 Ferroxamine > FAD +2 Iron +2 ferroxamine minus Fe(3) +2 Hydrogen ion
Adenosine triphosphate + Flavin Mononucleotide <> Pyrophosphate + FAD
Succinic acid + FAD <> FADH2 + Fumaric acid
Glycerol 3-phosphate + FAD <> Dihydroxyacetone phosphate + FADH2
Butanoyl-CoA + FAD <> FADH2 + Crotonoyl-CoA

Pathways:
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-000i-0001200900-b0740b3d33d50996ccdeView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-000m-0105900000-3abff26d5bb35f8527b8View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-000i-0931700000-73f360589a13230eea7aView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000j-0908600300-b1eccda8ebae8b9e4cc1View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-0900000000-bdb826f9c3cbc09eff9bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-00di-0019800000-00ad56b6b6a3bb4516e6View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000b-0009400000-667064ca470a5c341974View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000j-0509700500-8766cb874f927ed5a795View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-0900000000-3125e04c09a14c62f22aView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-00di-0019700000-78c46ea4b4f562757e56View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000b-0009400000-94b845d2c8d082b9484cView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-001i-0000100900-6bac7b7f631dfc074a0cView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-001i-0920000000-49c9d4fb9b57a59f45a5View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-000i-0003900000-572f0b1bd59f71ab3c5fView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-000i-0003900000-d2ede6a2e7183f1c32a3View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-001i-0000100900-78554afbc26abe26af35View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-001i-0930000000-274da0a01c651b791733View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-000i-0003900000-55939cda9e14fc582757View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-000i-0003900000-db784762434fac3d351fView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, NegativeNot Available
1D NMR1H NMR SpectrumNot Available
2D NMR[1H,1H] 2D NMR SpectrumNot Available
2D NMR[1H,13C] 2D NMR SpectrumNot Available
References
References:
  • Becker K, Wilkinson AR: Flavin adenine dinucleotide levels in erythrocytes of very low birthweight infants under vitamin supplementation. Biol Neonate. 1993;63(2):80-5. Pubmed: 8448258
  • Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R., Van Dien, S. J., Rabinowitz, J. D. (2009). "Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli." Nat Chem Biol 5:593-599. Pubmed: 19561621
  • Buchholz, A., Takors, R., Wandrey, C. (2001). "Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques." Anal Biochem 295:129-137. Pubmed: 11488613
  • Cimino JA, Jhangiani S, Schwartz E, Cooperman JM: Riboflavin metabolism in the hypothyroid human adult. Proc Soc Exp Biol Med. 1987 Feb;184(2):151-3. Pubmed: 3809170
  • Cimino JA, Noto RA, Fusco CL, Cooperman JM: Riboflavin metabolism in the hypothyroid newborn. Am J Clin Nutr. 1988 Mar;47(3):481-3. Pubmed: 3348160
  • Flatz G, Simmersbach F: Flavin adenine dinucleotide concentration in erythrocytes with normal and deficient glucose-6-phosphate dehydrogenase. Klin Wochenschr. 1970 Sep 1;48(17):1071-2. Pubmed: 5523465
  • Gianazza E, Vergani L, Wait R, Brizio C, Brambilla D, Begum S, Giancaspero TA, Conserva F, Eberini I, Bufano D, Angelini C, Pegoraro E, Tramontano A, Barile M: Coordinated and reversible reduction of enzymes involved in terminal oxidative metabolism in skeletal muscle mitochondria from a riboflavin-responsive, multiple acyl-CoA dehydrogenase deficiency patient. Electrophoresis. 2006 Mar;27(5-6):1182-98. Pubmed: 16470778
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Kodentsova VM, Vrzhesinskaia OA, Alekseeva IA, Spirichev VB: [Comparison of biochemical criteria for supplying the human body with riboflavin] Vopr Med Khim. 1991 Sep-Oct;37(5):76-9. Pubmed: 1759408
  • Lisowsky T, Lee JE, Polimeno L, Francavilla A, Hofhaus G: Mammalian augmenter of liver regeneration protein is a sulfhydryl oxidase. Dig Liver Dis. 2001 Mar;33(2):173-80. Pubmed: 11346147
  • Lopez-Anaya A, Mayersohn M: Quantification of riboflavin, riboflavin 5'-phosphate and flavin adenine dinucleotide in plasma and urine by high-performance liquid chromatography. J Chromatogr. 1987 Dec 25;423:105-13. Pubmed: 3443641
  • Mohrenweiser HW, Novotny JE: ACP1GUA-1--a low-activity variant of human erythrocyte acid phosphatase: association with increased glutathione reductase activity. Am J Hum Genet. 1982 May;34(3):425-33. Pubmed: 7081221
  • Van Binsbergen CJ, Odink J, Van den Berg H, Koppeschaar H, Coelingh Bennink HJ: Nutritional status in anorexia nervosa: clinical chemistry, vitamins, iron and zinc. Eur J Clin Nutr. 1988 Nov;42(11):929-37. Pubmed: 3074921
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Zempleni J: Determination of riboflavin and flavocoenzymes in human blood plasma by high-performance liquid chromatography. Ann Nutr Metab. 1995;39(4):224-6. Pubmed: 8546438
Synthesis Reference: Not Available
Material Safety Data Sheet (MSDS) Download (PDF)
External Links:
ResourceLink
CHEBI ID16238
HMDB IDHMDB01248
Pubchem Compound ID439154
Kegg IDC00016
ChemSpider ID559059
WikipediaFAD
BioCyc IDFAD
EcoCyc IDFAD
Ligand ExpoFAE

Enzymes

General function:
Involved in electron carrier activity
Specific function:
Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth
Gene Name:
sdhB
Locus Tag:
PA1584
Molecular weight:
26.2 kDa
Reactions
Succinate + acceptor = fumarate + reduced acceptor.
General function:
Involved in oxidoreductase activity
Specific function:
Oxidizes proline to glutamate for use as a carbon and nitrogen source and also function as a transcriptional repressor of the put operon
Gene Name:
putA
Locus Tag:
PA0782
Molecular weight:
115.6 kDa
Reactions
L-proline + acceptor = (S)-1-pyrroline-5-carboxylate + reduced acceptor.
(S)-1-pyrroline-5-carboxylate + NAD(P)(+) + 2 H(2)O = L-glutamate + NAD(P)H.
General function:
Involved in metabolic process
Specific function:
Catalyzes the removal of elemental sulfur and selenium atoms from cysteine and selenocysteine to produce alanine. Functions as a sulfur delivery protein for NAD, biotin and Fe-S cluster synthesis. Transfers sulfur on 'Cys-456' of thiI in a transpersulfidation reaction. Transfers sulfur on 'Cys-19' of tusA in a transpersulfidation reaction. Functions also as a selenium delivery protein in the pathway for the biosynthesis of selenophosphate
Gene Name:
iscS
Locus Tag:
PA3814
Molecular weight:
44.7 kDa
Reactions
L-cysteine + acceptor = L-alanine + S-sulfanyl-acceptor.
General function:
Involved in D-amino-acid dehydrogenase activity
Specific function:
Oxidative deamination of D-amino acids
Gene Name:
dadA
Locus Tag:
PA5304
Molecular weight:
47.1 kDa
Reactions
A D-amino acid + H(2)O + acceptor = a 2-oxo acid + NH(3) + reduced acceptor.
General function:
Involved in electron carrier activity
Specific function:
Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth
Gene Name:
sdhA
Locus Tag:
PA1583
Molecular weight:
63.5 kDa
Reactions
Succinate + acceptor = fumarate + reduced acceptor.
General function:
Involved in succinate dehydrogenase activity
Specific function:
Membrane-anchoring subunit of succinate dehydrogenase (SDH)
Gene Name:
sdhD
Locus Tag:
PA1582
Molecular weight:
13.7 kDa
General function:
Involved in FMN adenylyltransferase activity
Specific function:
ATP + riboflavin = ADP + FMN
Gene Name:
ribF
Locus Tag:
PA4561
Molecular weight:
34.3 kDa
Reactions
ATP + riboflavin = ADP + FMN.
ATP + FMN = diphosphate + FAD.
General function:
Involved in oxidoreductase activity
Specific function:
Conversion of glycerol 3-phosphate to dihydroxyacetone. Uses molecular oxygen or nitrate as electron acceptor
Gene Name:
glpD
Locus Tag:
PA3584
Molecular weight:
57.1 kDa
Reactions
sn-glycerol 3-phosphate + a quinone = glycerone phosphate + a quinol.
General function:
Involved in sulfite reductase (NADPH) activity
Specific function:
Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L- cysteine from sulfate
Gene Name:
cysI
Locus Tag:
PA1838
Molecular weight:
62.1 kDa
Reactions
H(2)S + 3 NADP(+) + 3 H(2)O = sulfite + 3 NADPH.
General function:
Involved in malate dehydrogenase (quinone) activity
Specific function:
(S)-malate + a quinone = oxaloacetate + reduced quinone
Gene Name:
mqo
Locus Tag:
PA3452
Molecular weight:
57.2 kDa
Reactions
(S)-malate + a quinone = oxaloacetate + reduced quinone.
General function:
Involved in succinate dehydrogenase activity
Specific function:
Membrane-anchoring subunit of succinate dehydrogenase (SDH)
Gene Name:
sdhC
Locus Tag:
PA1581
Molecular weight:
13.7 kDa
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Catalyzes the dehydrogenation of acyl-CoA
Gene Name:
fadE
Locus Tag:
PA2815
Molecular weight:
88.8 kDa
Reactions
An acyl-CoA + FAD = a dehydrogenated acyl-CoA + FADH(2).
General function:
Involved in iron ion binding
Specific function:
May be involved in the formation or repair of [Fe-S] clusters present in iron-sulfur proteins (Potential)
Gene Name:
nifU
Locus Tag:
PA3813
Molecular weight:
13.8 kDa

Transporters