Record Information
Version 1.0
Update Date 1/22/2018 11:54:54 AM
Metabolite IDPAMDB000476
Identification
Name: Lactaldehyde
Description:L-lactaldehyde is an intermediate metabolite in the pyruvate metabolism pathway. L-lactaldehyde is irreversibly produced from pyruvaldehyde via the enzyme aldehyde reductase (EC:1.1.1.21) which is then irreversibly converted to propylene glycol via aldehyde reductase (EC:1.1.1.21).
Structure
Thumb
Synonyms:
  • (+-)-2-Hydroxypropanal
  • (2S)-2-hydroxypropanal
  • (S)-lactaldehyde
  • 2-Hydroxypropanal
  • 2-Hydroxypropionaldehyde
  • a-Hydroxypropionaldehyde
  • Alpha-Hydroxypropionaldehyde
  • Hydroxypropionaldehyde
  • L-2-Hydroxypropionaldehyde
  • L-Lactaldehyde
  • Lactald
  • Lactaldehyde
  • α-Hydroxypropionaldehyde
Chemical Formula: C3H6O2
Average Molecular Weight: 74.079
Monoisotopic Molecular Weight: 74.036779433
InChI Key: BSABBBMNWQWLLU-UHFFFAOYSA-N
InChI:InChI=1S/C3H6O2/c1-3(5)2-4/h2-3,5H,1H3
CAS number: 598-35-6
IUPAC Name:(2S)-2-hydroxypropanal
Traditional IUPAC Name: L-lactaldehyde
SMILES:[H]C(=O)C(C)O
Chemical Taxonomy
Taxonomy DescriptionThis compound belongs to the class of organic compounds known as alpha-hydroxyaldehydes. These are organic compounds containing an aldehyde substituted with a hydroxyl group on the adjacent carbon.
Kingdom Organic compounds
Super ClassOrganooxygen compounds
Class Carbonyl compounds
Sub ClassAldehydes
Direct Parent Alpha-hydroxyaldehydes
Alternative Parents
Substituents
  • Alpha-hydroxyaldehyde
  • Secondary alcohol
  • Hydrocarbon derivative
  • Short-chain aldehyde
  • Alcohol
  • Aliphatic acyclic compound
Molecular Framework Aliphatic acyclic compounds
External Descriptors
Physical Properties
State: Solid
Charge:0
Melting point: Not Available
Experimental Properties:
PropertyValueSource
Predicted Properties
PropertyValueSource
Water Solubility658.0 mg/mLALOGPS
logP-1ALOGPS
logP-0.63ChemAxon
logS0.95ALOGPS
pKa (Strongest Acidic)14ChemAxon
pKa (Strongest Basic)-3.2ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area37.3 Å2ChemAxon
Rotatable Bond Count1ChemAxon
Refractivity17.91 m3·mol-1ChemAxon
Polarizability7.16 Å3ChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations: Cytoplasm
Reactions:
Pathways:
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-MSNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-004i-9000000000-1aa2338222aff31e5e0fView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-056r-9000000000-c450e557b2fe7c5dc5a1View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0a6r-9000000000-dceca37df952939d1084View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-00di-9000000000-cd6930d73efb436bc0ffView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-00di-9000000000-97d1b594dd3b1d9b08b8View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4i-9000000000-90fa8913085480b29a8aView in MoNA
References
References:
  • Akhy MT, Brown CM, Old DC: L-Rhamnose utilisation in Salmonella typhimurium. J Appl Bacteriol. 1984 Apr;56(2):269-74. Pubmed: 6373710
  • Casazza JP, Felver ME, Veech RL: The metabolism of acetone in rat. J Biol Chem. 1984 Jan 10;259(1):231-6. Pubmed: 6706932
  • Chen YM, Chakrabarti T, Lin EC: Constitutive activation of L-fucose genes by an unlinked mutation in Escherichia coli. J Bacteriol. 1984 Aug;159(2):725-9. Pubmed: 6378890
  • Chen YM, Lin EC: Dual control of a common L-1,2-propanediol oxidoreductase by L-fucose and L-rhamnose in Escherichia coli. J Bacteriol. 1984 Mar;157(3):828-32. Pubmed: 6421801
  • Di Costanzo L, Gomez GA, Christianson DW: Crystal structure of lactaldehyde dehydrogenase from Escherichia coli and inferences regarding substrate and cofactor specificity. J Mol Biol. 2007 Feb 16;366(2):481-93. Epub 2006 Nov 10. Pubmed: 17173928
  • ENGLESBERG E: Physiological basis for rhamnose utilization by a mutant of Pasteurella pestis. I. Experiments with resting cells; the isolation of lactic aldehyde. J Bacteriol. 1957 Jul;74(1):8-11. Pubmed: 13462953
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Ros J, Aguilar J: Genetic and structural evidence for the presence of propanediol oxidoreductase isoenzymes in Escherichia coli. J Gen Microbiol. 1984 Mar;130(3):687-92. Pubmed: 6427403
  • SANDMAN RP, MILLER ON: Studies on the metabolism of lactaldehyde. I. Separation and determination of lactaldehyde and related 3-carbon compounds. J Biol Chem. 1958 Jan;230(1):353-9. Pubmed: 13502404
  • TING SM, MILLER ON, SELLINGER OZ: THE METABOLISM OF LACTALDEHYDE. VII. THE OXIDATION OF D-LACTALDEHYDE IN RAT LIVER. Biochim Biophys Acta. 1965 Mar 8;97:407-15. Pubmed: 14323585
  • TING SM, SELLINGER OZ, MILLER ON: THE METABOLISM OF LACTALDEHYDE. VI. THE REDUCTION OF D- AND L-LACTALDEHYDE IN RAT LIVER. Biochim Biophys Acta. 1964 Aug 26;89:217-25. Pubmed: 14203169
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
Synthesis Reference: Kranz, Cyrill. Synthesis of Lactic Aldehyde. Chemicke Listy pro Vedu a Prumysl (1912), 5 323-7.
Material Safety Data Sheet (MSDS) Not Available
External Links:
ResourceLink
CHEBI ID18041
HMDB IDHMDB03052
Pubchem Compound ID439231
Kegg IDC05999
ChemSpider ID388368
WikipediaLactaldehyde
BioCyc IDLACTALD
EcoCyc IDLACTALD

Enzymes

General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the reduction of 2,5-diketo-D-gluconic acid (25DKG) to 2-keto-L-gulonic acid (2KLG)
Gene Name:
dkgB
Locus Tag:
PA4167
Molecular weight:
29.5 kDa
Reactions
2-dehydro-D-gluconate + NADP(+) = 2,5-didehydro-D-gluconate + NADPH.
General function:
Involved in carbon-carbon lyase activity
Specific function:
Catalyzes the reversible retro-aldol cleavage of 2-keto- 3-deoxy-L-rhamnonate (KDR) to pyruvate and lactaldehyde. 2-keto-3- deoxy-L-mannonate, 2-keto-3-deoxy-L-lyxonate and 4-hydroxy-2- ketoheptane-1,7-dioate (HKHD) are also reasonably good substrates, although 2-keto-3-deoxy-L-rhamnonate is likely to be the physiological substrate
Gene Name:
rhmA
Locus Tag:
PA4128
Molecular weight:
28.2 kDa
Reactions
2-dehydro-3-deoxy-L-rhamnonate = pyruvate + (R)-lactaldehyde.