Record Information
Version 1.0
Update Date 1/22/2018 11:54:53 AM
Metabolite IDPAMDB000409
Identification
Name: Tetradecanoyl-CoA
Description:Tetradecanoyl-CoA (or myristoyl-CoA) is an intermediate in fatty acid biosynthesis, fatty acid elongation and the beta oxidation of fatty acids. It is also used in the myristoylation of proteins. The first pass through the beta-oxidation process starts with the saturated fatty acid palmitoyl-CoA and produces myristoyl-CoA. A total of four enzymatic steps are required, starting with VLCAD CoA dehydrogenase (Very Long Chain) activity, followed by three enzymatic steps catalyzed by enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and ketoacyl-CoA thiolase. Myristoylation of proteins is also catalyzed by the presence of myristoyl-CoA along with Myristoyl-CoA:protein N-myristoyltransferase (NMT). Myristoylation is an irreversible, co-translational (during translation) protein modification found in animals, plants, fungi and viruses. In this protein modification a myristoyl group (derived from myristioyl CoA) is covalently attached via an amide bond to the alpha-amino group of an N-terminal amino acid of a nascent polypeptide. It is more common on glycine residues but also occurs on other amino acids. Myristoylation also occurs post-translationally, for example when previously internal glycine residues become exposed by caspase cleavage during apoptosis.
Structure
Thumb
Synonyms:
  • Myristoyl-CoA
  • Myristoyl-coenzyme A
  • N-C14:0CoA
  • N-C14:0Coenzyme A
  • S-Tetradecanoyl-coenzyme A
  • Tetradecanoyl CoA
  • Tetradecanoyl Coenzyme A
  • Tetradecanoyl-CoA
  • Tetradecanoyl-CoA (N-C14:0CoA)
  • Tetradecanoyl-coenzyme A
Chemical Formula: C35H62N7O17P3S
Average Molecular Weight: 977.89
Monoisotopic Molecular Weight: 977.313573819
InChI Key: DUAFKXOFBZQTQE-XVDJLSDJSA-N
InChI:InChI=1S/C35H62N7O17P3S/c1-4-5-6-7-8-9-10-11-12-13-14-15-26(44)63-19-18-37-25(43)16-17-38-33(47)30(46)35(2,3)21-56-62(53,54)59-61(51,52)55-20-24-29(58-60(48,49)50)28(45)34(57-24)42-23-41-27-31(36)39-22-40-32(27)42/h22-24,28-30,34,45-46H,4-21H2,1-3H3,(H,37,43)(H,38,47)(H,51,52)(H,53,54)(H2,36,39,40)(H2,48,49,50)/t24-,28-,29-,30?,34-/m1/s1
CAS number: 3130-72-1
IUPAC Name:{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy({3-hydroxy-2,2-dimethyl-3-[(2-{[2-(tetradecanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy})phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid
Traditional IUPAC Name: [(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-2-[({hydroxy[hydroxy(3-hydroxy-2,2-dimethyl-3-[(2-{[2-(tetradecanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy)phosphoryl]oxyphosphoryl}oxy)methyl]oxolan-3-yl]oxyphosphonic acid
SMILES:CCCCCCCCCCCCCC(=O)SCCNC(=O)CCNC(=O)C(O)C(C)(C)COP(O)(=O)OP(O)(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP(O)(O)=O)N1C=NC2=C1N=CN=C2N
Chemical Taxonomy
Taxonomy DescriptionThis compound belongs to the class of organic compounds known as 2,3,4-saturated fatty acyl coas. These are acyl-CoAs carrying a 2,3,4-saturated fatty acyl chain.
Kingdom Organic compounds
Super ClassLipids and lipid-like molecules
Class Fatty Acyls
Sub ClassFatty acyl thioesters
Direct Parent 2,3,4-saturated fatty acyl CoAs
Alternative Parents
Substituents
  • Coenzyme a or derivatives
  • Purine ribonucleoside diphosphate
  • Purine ribonucleoside 3',5'-bisphosphate
  • N-glycosyl compound
  • Glycosyl compound
  • Beta amino acid or derivatives
  • Organic pyrophosphate
  • Monosaccharide phosphate
  • 6-aminopurine
  • Purine
  • Imidazopyrimidine
  • Monoalkyl phosphate
  • Aminopyrimidine
  • Imidolactam
  • Alkyl phosphate
  • Pyrimidine
  • Primary aromatic amine
  • Phosphoric acid ester
  • Organic phosphoric acid derivative
  • Organic phosphate
  • N-substituted imidazole
  • N-acyl-amine
  • Monosaccharide
  • Fatty amide
  • Saccharide
  • Heteroaromatic compound
  • Oxolane
  • Imidazole
  • Azole
  • Thiocarboxylic acid ester
  • Secondary carboxylic acid amide
  • Secondary alcohol
  • Carboxamide group
  • Oxacycle
  • Azacycle
  • Organoheterocyclic compound
  • Sulfenyl compound
  • Thioether
  • Thiocarboxylic acid or derivatives
  • Carboxylic acid derivative
  • Carboxylic acid amide
  • Hydrocarbon derivative
  • Primary amine
  • Organosulfur compound
  • Organooxygen compound
  • Organonitrogen compound
  • Carbonyl group
  • Amine
  • Alcohol
  • Aromatic heteropolycyclic compound
Molecular Framework Aromatic heteropolycyclic compounds
External Descriptors
Physical Properties
State: Solid
Charge:-4
Melting point: Not Available
Experimental Properties:
PropertyValueSource
Predicted Properties
PropertyValueSource
Water Solubility2.21 mg/mLALOGPS
logP1.84ALOGPS
logP-1.4ChemAxon
logS-2.6ALOGPS
pKa (Strongest Acidic)0.83ChemAxon
pKa (Strongest Basic)4.95ChemAxon
Physiological Charge-4ChemAxon
Hydrogen Acceptor Count17ChemAxon
Hydrogen Donor Count9ChemAxon
Polar Surface Area363.63 Å2ChemAxon
Rotatable Bond Count32ChemAxon
Refractivity227.45 m3·mol-1ChemAxon
Polarizability96.43 Å3ChemAxon
Number of Rings3ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations: Cytoplasm
Reactions:
Pathways:
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-000i-1911101102-349a13615858f61c2639View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-000i-0941300000-9797f6c398276f5d5e98View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-000i-2900102000-cc4f9c8978927acec695View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0a7i-4971342506-ab177bf279e0e32e2b12View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0560-3921201001-624d08d1bbb66df93c2eView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-057i-6900000000-d973a8b2d469b04161ebView in MoNA
References
References:
  • Hunt MC, Ruiter J, Mooyer P, van Roermond CW, Ofman R, Ijlst L, Wanders RJ: Identification of fatty acid oxidation disorder patients with lowered acyl-CoA thioesterase activity in human skin fibroblasts. Eur J Clin Invest. 2005 Jan;35(1):38-46. Pubmed: 15638818
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
Synthesis Reference: Not Available
Material Safety Data Sheet (MSDS) Not Available
External Links:
ResourceLink
CHEBI ID15532
HMDB IDHMDB01521
Pubchem Compound ID1126
Kegg IDC02593
ChemSpider ID58623
Wikipedia IDNot Available
BioCyc IDTETRADECANOYL-COA
EcoCyc IDTETRADECANOYL-COA

Enzymes

General function:
Involved in acetyl-CoA C-acyltransferase activity
Specific function:
Catalyzes the final step of fatty acid oxidation in which acetyl-CoA is released and the CoA ester of a fatty acid two carbons shorter is formed. Involved in the aerobic and anaerobic degradation of long-chain fatty acids
Gene Name:
fadA
Locus Tag:
PA3013
Molecular weight:
41.6 kDa
Reactions
Acyl-CoA + acetyl-CoA = CoA + 3-oxoacyl-CoA.
General function:
Involved in catalytic activity
Specific function:
Catalyzes the esterification, concomitant with transport, of exogenous long-chain fatty acids into metabolically active CoA thioesters for subsequent degradation or incorporation into phospholipids
Gene Name:
fadD
Locus Tag:
PA3299
Molecular weight:
61.7 kDa
Reactions
ATP + a long-chain fatty acid + CoA = AMP + diphosphate + an acyl-CoA.
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Catalyzes the dehydrogenation of acyl-CoA
Gene Name:
fadE
Locus Tag:
PA2815
Molecular weight:
88.8 kDa
Reactions
An acyl-CoA + FAD = a dehydrogenated acyl-CoA + FADH(2).
General function:
Involved in acyl-CoA hydrolase activity
Specific function:
Can hydrolyze a broad range of acyl-CoA thioesters. Its physiological function is not known
Gene Name:
tesB
Locus Tag:
PA3942
Molecular weight:
32.9 kDa