Record Information
Version 1.0
Update Date 1/22/2018 12:54:54 PM
Metabolite IDPAMDB000160
Identification
Name: Gluconic acid
Description:Gluconic acid occurs naturally in fruit, honey and wine and is used as a food additive, an acidity regulator. It is also used in cleaning products where it helps cleaning up mineral deposits. It is a strong chelating agent, especially in alkaline solution. It chelates the anions of calcium, iron, aluminium, copper, and other heavy metals. Glucono delta lactone is a cyclic ester of D-gluconic acid.
Structure
Thumb
Synonyms:
  • 2,3,4,5,6-Pentahydroxy-hexanoate
  • 2,3,4,5,6-Pentahydroxy-hexanoic acid
  • 2,3,4,5,6-Pentahydroxyhexanoate
  • 2,3,4,5,6-Pentahydroxyhexanoic acid
  • Aldonate
  • Aldonic acid
  • D-Gluco-hexonate
  • D-Gluco-hexonic acid
  • D-Gluconate
  • D-Gluconic acid
  • D-Gluconsaeure
  • D-Glukonsaeure
  • Dextronate
  • Dextronic acid
  • GCO
  • Glosanto
  • Gluconate
  • Gluconic acid
  • Glycogenate
  • Glycogenic acid
  • Glyconate
  • Glyconic acid
  • Hexonate
  • Hexonic acid
  • Maltonate
  • Maltonic acid
  • Pentahydroxycaproate
  • Pentahydroxycaproic acid
Chemical Formula: C6H12O7
Average Molecular Weight: 196.1553
Monoisotopic Molecular Weight: 196.058302738
InChI Key: RGHNJXZEOKUKBD-SQOUGZDYSA-N
InChI:InChI=1S/C6H12O7/c7-1-2(8)3(9)4(10)5(11)6(12)13/h2-5,7-11H,1H2,(H,12,13)/t2-,3-,4+,5-/m1/s1
CAS number: 526-95-4
IUPAC Name:(2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoic acid
Traditional IUPAC Name: gluconate
SMILES:OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O
Chemical Taxonomy
Taxonomy DescriptionThis compound belongs to the class of organic compounds known as sugar acids and derivatives. These are compounds containing a saccharide unit which bears a carboxylic acid group.
Kingdom Organic compounds
Super ClassOrganooxygen compounds
Class Carbohydrates and carbohydrate conjugates
Sub ClassSugar acids and derivatives
Direct Parent Sugar acids and derivatives
Alternative Parents
Substituents
  • Gluconic_acid
  • Medium-chain hydroxy acid
  • Medium-chain fatty acid
  • Beta-hydroxy acid
  • Fatty acyl
  • Fatty acid
  • Monosaccharide
  • Hydroxy acid
  • Alpha-hydroxy acid
  • Secondary alcohol
  • Polyol
  • 1,2-diol
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Carboxylic acid derivative
  • Hydrocarbon derivative
  • Primary alcohol
  • Carbonyl group
  • Alcohol
  • Aliphatic acyclic compound
Molecular Framework Aliphatic acyclic compounds
External Descriptors
Physical Properties
State: Solid
Charge:-1
Melting point: 113-118 °C
Experimental Properties:
PropertyValueSource
Water Solubility:316 mg/mL at 25 oC [MERCK INDEX (1996)]; 316.0 mg/mL [MERCK INDEX (1996)]PhysProp
Predicted Properties
PropertyValueSource
Water Solubility159.0 mg/mLALOGPS
logP-2.6ALOGPS
logP-3.4ChemAxon
logS-0.09ALOGPS
pKa (Strongest Acidic)3.39ChemAxon
pKa (Strongest Basic)-3ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count7ChemAxon
Hydrogen Donor Count6ChemAxon
Polar Surface Area138.45 Å2ChemAxon
Rotatable Bond Count5ChemAxon
Refractivity38.27 m3·mol-1ChemAxon
Polarizability17.15 Å3ChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations: Cytoplasm
Reactions:
Pathways:
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies)splash10-0002-0932000000-202af87cea2d1f7184abView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies)splash10-005a-0920000000-2308d9356bc5bb01420eView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies)splash10-014j-0950000000-61ab7adf15e353df4ba2View in MoNA
GC-MSGC-MS Spectrum - GC-MS (6 TMS)splash10-0le9-1964000000-5eb7d6777170e1ad5fa0View in MoNA
GC-MSGC-MS Spectrum - GC-MSNot Available
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-06vj-1900000000-78e4a5d92be678c068e4View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-03ds-5900000000-f5d8284baa473ce9d77fView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-014i-9500000000-7c5b20eef98d0e3d6cbbView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negativesplash10-0002-0900000000-b2632ca9154cc5e44438View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negativesplash10-002b-5900000000-4a3066f9dfd6653682fbView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negativesplash10-004i-9000000000-50f63dfd017a8380a47cView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Negativesplash10-056r-9000000000-91ccf7c8949c1c9d852aView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Negativesplash10-0a6r-9000000000-6e40f1cebd8b460016b3View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, NegativeNot Available
1D NMR1H NMR SpectrumNot Available
1D NMR1H NMR SpectrumNot Available
1D NMR13C NMR SpectrumNot Available
2D NMR[1H,1H] 2D NMR SpectrumNot Available
2D NMR[1H,13C] 2D NMR SpectrumNot Available
References
References:
  • Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R., Van Dien, S. J., Rabinowitz, J. D. (2009). "Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli." Nat Chem Biol 5:593-599. Pubmed: 19561621
  • Harkness RA, Purkiss P, Duffy S, Chalmers RA, Jones M: The effects of fetal energy depletion on amniotic fluid concentrations of amino acids, organic acids and related metabolites. J Inherit Metab Dis. 1988;11(1):103-13. Pubmed: 3128683
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. Pubmed: 19212411
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Vijayendran, C., Barsch, A., Friehs, K., Niehaus, K., Becker, A., Flaschel, E. (2008). "Perceiving molecular evolution processes in Escherichia coli by comprehensive metabolite and gene expression profiling." Genome Biol 9:R72. Pubmed: 18402659
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
Synthesis Reference: Anastassiadis, Savas; Morgunov, Igor G. Gluconic acid production. Recent Patents on Biotechnology (2007), 1(2), 167-180.
Material Safety Data Sheet (MSDS) Download (PDF)
External Links:
ResourceLink
CHEBI ID33198
HMDB IDHMDB00625
Pubchem Compound ID10690
Kegg IDC00257
ChemSpider ID10240
WikipediaGluconic acid
BioCyc IDGLUCONATE
EcoCyc IDGLUCONATE
Ligand ExpoGCO

Enzymes

General function:
Involved in oxidoreductase activity, acting on CH-OH group of donors
Specific function:
GDH is probably involved in energy conservation rather than in sugar metabolism
Gene Name:
gcd
Locus Tag:
PA2290
Molecular weight:
86.2 kDa
Reactions
D-glucose + ubiquinone = D-glucono-1,5-lactone + ubiquinol.
General function:
Involved in oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor
Specific function:
Catalyzes the NADPH-dependent reduction of glyoxylate and hydroxypyruvate into glycolate and glycerate, respectively. Can also reduce 2,5-diketo-D-gluconate (25DKG) to 5-keto-D- gluconate (5KDG), 2-keto-D-gluconate (2KDG) to D-gluconate, and 2- keto-L-gulonate (2KLG) to L-idonate (IA), but it is not its physiological function. Inactive towards 2-oxoglutarate, oxaloacetate, pyruvate, 5-keto-D-gluconate, D-fructose and L- sorbose. Activity with NAD is very low
Gene Name:
ghrB
Locus Tag:
PA2263
Molecular weight:
35.6 kDa
Reactions
Glycolate + NADP(+) = glyoxylate + NADPH.
D-glycerate + NAD(P)(+) = hydroxypyruvate + NAD(P)H.
D-gluconate + NADP(+) = 2-dehydro-D-gluconate + NADPH.
General function:
Involved in oxidoreductase activity, acting on the CH-OH group of donors, quinone or similar compound as acceptor
Specific function:
Aldose sugar dehydrogenase with broad substrate specificity. The physiological substrate is unknown. Can oxidize glucose to gluconolactone. Can also utilize D-arabinose, L- arabinose and 2-deoxy-glucose. Has higher activity towards oligomeric sugars, such as maltose, maltotriose or cellobiose. It may function to input sugar-derived electrons into the respiratory network
Gene Name:
yliI
Locus Tag:
PA1112
Molecular weight:
41.4 kDa

Transporters