Record Information
Version 1.0
Update Date 1/22/2018 12:54:54 PM
Metabolite IDPAMDB000052
Identification
Name: Guanosine
Description:Guanosine is a nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a beta-N9-glycosidic bond. Guanosine can be phosphorylated to become GMP (guanosine monophosphate), cGMP (cyclic guanosine monophosphate), GDP (guanosine diphosphate) and GTP (guanosine triphosphate). (Wikipedia)
Structure
Thumb
Synonyms:
  • 2-Amino-1,9-dihydro-9-b-D-ribofuranosyl-6H-purin-6-one
  • 2-amino-1,9-dihydro-9-b-delta-Ribofuranosyl-6H-purin-6-one
  • 2-amino-1,9-dihydro-9-b-δ-Ribofuranosyl-6H-purin-6-one
  • 2-Amino-1,9-dihydro-9-beta-D-ribofuranosyl-6H-purin-6-one
  • 2-Amino-1,9-dihydro-9-beta-delta-ribofuranosyl-6H-purin-6-one
  • 2-amino-1,9-dihydro-9-β-D-Ribofuranosyl-6H-purin-6-one
  • 2-amino-1,9-dihydro-9-β-δ-Ribofuranosyl-6H-purin-6-one
  • 2-Amino-Inosine
  • 9-b-D-ribofuranosyl-Guanine
  • 9-b-delta-Ribofuranosyl-guanine
  • 9-b-δ-Ribofuranosyl-guanine
  • 9-beta-D-Ribofuranosyl-Guanine
  • 9-beta-delta-Ribofuranosyl-Guanine
  • 9-β-D-Ribofuranosyl-guanine
  • 9-β-δ-Ribofuranosyl-guanine
  • B-D-Ribofuranoside guanine-9
  • b-delta-Ribofuranoside guanine-9
  • b-δ-Ribofuranoside guanine-9
  • Beta-D-Ribofuranoside guanine-9
  • Beta-delta-Ribofuranoside guanine-9
  • Guanosine
  • Nucleoside Q
  • Ribonucleoside
  • Vernine
  • β-D-Ribofuranoside guanine-9
  • β-δ-Ribofuranoside guanine-9
Chemical Formula: C10H13N5O5
Average Molecular Weight: 283.2407
Monoisotopic Molecular Weight: 283.091668551
InChI Key: NYHBQMYGNKIUIF-UUOKFMHZSA-N
InChI:InChI=1S/C10H13N5O5/c11-10-13-7-4(8(19)14-10)12-2-15(7)9-6(18)5(17)3(1-16)20-9/h2-3,5-6,9,16-18H,1H2,(H3,11,13,14,19)/t3-,5-,6-,9-/m1/s1
CAS number: 118-00-3
IUPAC Name:2-amino-9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6,9-dihydro-1H-purin-6-one
Traditional IUPAC Name: guanosine
SMILES:NC1=NC2=C(N=CN2[C@@H]2O[C@H](CO)[C@@H](O)[C@H]2O)C(=O)N1
Chemical Taxonomy
Taxonomy DescriptionThis compound belongs to the class of organic compounds known as purine nucleosides. These are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety.
Kingdom Organic compounds
Super ClassNucleosides, nucleotides, and analogues
Class Purine nucleosides
Sub ClassNot Available
Direct Parent Purine nucleosides
Alternative Parents
Substituents
  • Purine ribonucleoside
  • N-glycosyl compound
  • Glycosyl compound
  • Purine
  • Imidazopyrimidine
  • Hydroxypyrimidine
  • Pyrimidine
  • N-substituted imidazole
  • Monosaccharide
  • Heteroaromatic compound
  • Oxolane
  • Imidazole
  • Azole
  • Secondary alcohol
  • 1,2-diol
  • Oxacycle
  • Azacycle
  • Organoheterocyclic compound
  • Hydrocarbon derivative
  • Primary alcohol
  • Organooxygen compound
  • Organonitrogen compound
  • Alcohol
  • Aromatic heteropolycyclic compound
Molecular Framework Aromatic heteropolycyclic compounds
External Descriptors
Physical Properties
State: Solid
Charge:0
Melting point: 239 °C
Experimental Properties:
PropertyValueSource
Water Solubility:0.7 mg/mL at 18 oC [YALKOWSKY,SH & DANNENFELSER,RM (1992)]PhysProp
LogP:-1.90 [SANGSTER (1993)]PhysProp
Predicted Properties
PropertyValueSource
Water Solubility15.3 mg/mLALOGPS
logP-2.1ALOGPS
logP-2.7ChemAxon
logS-1.3ALOGPS
pKa (Strongest Acidic)10.16ChemAxon
pKa (Strongest Basic)1.79ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count8ChemAxon
Hydrogen Donor Count5ChemAxon
Polar Surface Area155.22 Å2ChemAxon
Rotatable Bond Count2ChemAxon
Refractivity64.62 m3·mol-1ChemAxon
Polarizability26.02 Å3ChemAxon
Number of Rings3ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations: Cytoplasm
Reactions:
Pathways:
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (5 TMS)splash10-0f7k-1952000000-c57c052c65f3fa9504afView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies)splash10-0feb-0963000000-c91b93f300b50fbc99c1View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (4 TMS)splash10-00di-9440000000-361092fc2dc5206fe655View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (5 TMS)splash10-00di-9421000000-b2b15c03b8206196f59fView in MoNA
GC-MSGC-MS Spectrum - GC-MSNot Available
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-0udi-0900000000-ef0cae7d67f9e803f2b2View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-0udi-0900000000-68fb606342b8bb123bb7View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-0f89-0900000000-48d32b9d62eda760619eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-0f7k-0920000000-f3db23cc762b5fb860e4View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-001i-0900000000-5da62630f03e15d8707cView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-001i-0900000000-1fa2eb473b57a37ecd45View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-0udi-0900000000-d71a3d2995d32c692eb7View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-001i-0390000000-ff54fe98a9c0e1bc104cView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-001i-0900000000-c023445b0f47e6e7267bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-0udi-0900000000-a094aa75c261cdce24deView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-0udi-0900000000-e114cc69f7ab438abb39View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-001j-0795222100-55ad26c7c4d9f64dd759View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-004i-0900000000-9450dc04b32ca468e146View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-0002-0900000000-0147dd895ffbecfa9668View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-03di-0190000000-5d00bb466dd23f062b86View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-0f89-0690030010-86fae3a6cae3e2b3de2cView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-001i-0900000000-97217b0084eeac14e7e1View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-0udi-0900000000-d0c65e36192b7ebdaae8View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-001i-0090000000-bb8ef433eba795395fe3View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negativesplash10-001i-0090000000-4ceff605ca97b7c0774aView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negativesplash10-0ue9-0960000000-1c286e55d437f33a29b3View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negativesplash10-0udi-0900000000-7149427a8c09f429fdbeView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Negativesplash10-0zgi-0900000000-5de849ca7144ca8afe05View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Negativesplash10-053r-0900000000-f97dbc10f152af4df778View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Positivesplash10-0ue9-0970000000-045435f1be487a94195cView in MoNA
1D NMR1H NMR SpectrumNot Available
1D NMR13C NMR SpectrumNot Available
2D NMR[1H,1H] 2D NMR SpectrumNot Available
2D NMR[1H,13C] 2D NMR SpectrumNot Available
References
References:
  • Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R., Van Dien, S. J., Rabinowitz, J. D. (2009). "Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli." Nat Chem Biol 5:593-599. Pubmed: 19561621
  • Hartwick RA, Krstulovic AM, Brown PR: Identification and quantitation of nucleosides, bases and other UV-absorbing compounds in serum, using reversed-phase high-performance liquid chromatography. II. Evaluation of human sera. J Chromatogr. 1979 Dec 30;186:659-76. Pubmed: 546939
  • Ishii, N., Nakahigashi, K., Baba, T., Robert, M., Soga, T., Kanai, A., Hirasawa, T., Naba, M., Hirai, K., Hoque, A., Ho, P. Y., Kakazu, Y., Sugawara, K., Igarashi, S., Harada, S., Masuda, T., Sugiyama, N., Togashi, T., Hasegawa, M., Takai, Y., Yugi, K., Arakawa, K., Iwata, N., Toya, Y., Nakayama, Y., Nishioka, T., Shimizu, K., Mori, H., Tomita, M. (2007). "Multiple high-throughput analyses monitor the response of E. coli to perturbations." Science 316:593-597. Pubmed: 17379776
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Lee SH, Jung BH, Kim SY, Chung BC: A rapid and sensitive method for quantitation of nucleosides in human urine using liquid chromatography/mass spectrometry with direct urine injection. Rapid Commun Mass Spectrom. 2004;18(9):973-7. Pubmed: 15116424
  • Saute JA, da Silveira LE, Soares FA, Martini LH, Souza DO, Ganzella M: Amnesic effect of GMP depends on its conversion to guanosine. Neurobiol Learn Mem. 2006 May;85(3):206-12. Epub 2005 Dec 1. Pubmed: 16325434
  • Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. Pubmed: 19212411
  • Traut TW: Physiological concentrations of purines and pyrimidines. Mol Cell Biochem. 1994 Nov 9;140(1):1-22. Pubmed: 7877593
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Wevers RA, Engelke UF, Moolenaar SH, Brautigam C, de Jong JG, Duran R, de Abreu RA, van Gennip AH: 1H-NMR spectroscopy of body fluids: inborn errors of purine and pyrimidine metabolism. Clin Chem. 1999 Apr;45(4):539-48. Pubmed: 10102915
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
Synthesis Reference: Tang, Shengrong; Huang, Weihong; Hou, Zuorong. Process of guanosine production by fermentation. Gongye Weishengwu (1998), 28(4), 11-16.
Material Safety Data Sheet (MSDS) Download (PDF)
External Links:
ResourceLink
CHEBI ID16750
HMDB IDHMDB00133
Pubchem Compound ID6802
Kegg IDC00387
ChemSpider ID6544
WikipediaGuanosine
BioCyc IDGUANOSINE
EcoCyc IDGUANOSINE
Ligand ExpoGMP

Enzymes

General function:
Involved in hydrolase activity
Specific function:
Nucleotidase with a broad substrate specificity as it can dephosphorylate various ribo- and deoxyribonucleoside 5'- monophosphates and ribonucleoside 3'-monophosphates with highest affinity to 3'-AMP. Also hydrolyzes polyphosphate (exopolyphosphatase activity) with the preference for short-chain- length substrates (P20-25). Might be involved in the regulation of dNTP and NTP pools, and in the turnover of 3'-mononucleotides produced by numerous intracellular RNases (T1, T2, and F) during the degradation of various RNAs. Also plays a significant physiological role in stress-response and is required for the survival of Pseudomonas aeruginosa in stationary growth phase
Gene Name:
surE
Locus Tag:
PA3625
Molecular weight:
26.4 kDa
Reactions
A 5'-ribonucleotide + H(2)O = a ribonucleoside + phosphate.
A 3'-ribonucleotide + H(2)O = a ribonucleoside + phosphate.
(Polyphosphate)(n) + H(2)O = (polyphosphate)(n-1) + phosphate.
General function:
Involved in acid phosphatase activity
Specific function:
Dephosphorylates several organic phosphomonoesters and catalyzes the transfer of low-energy phosphate groups from phosphomonoesters to hydroxyl groups of various organic compounds. Preferentially acts on aryl phosphoesters. Might function as a broad-spectrum dephosphorylating enzyme able to scavenge both 3'- and 5'-nucleotides and also additional organic phosphomonoesters
Gene Name:
aphA
Locus Tag:
PA1409
Molecular weight:
38 kDa
Reactions
A phosphate monoester + H(2)O = an alcohol + phosphate.
General function:
Involved in magnesium ion binding
Specific function:
dGTPase preferentially hydrolyzes dGTP over the other canonical NTPs
Gene Name:
dgt
Locus Tag:
PA1124
Molecular weight:
56.7 kDa
Reactions
dGTP + H(2)O = deoxyguanosine + triphosphate.

Transporters