Record Information
Version 1.0
Update Date 1/22/2018 12:54:54 PM
Metabolite IDPAMDB000378
Identification
Name: Putrescine
Description:Putrescine is a polyamine. Putrescine is related to cadaverine (another polyamine). Both are produced by the breakdown of amino acids in living and dead organisms and both are toxic in large doses. Putrescine and cadaverine are largely responsible for the foul odor of putrefying flesh. Putrescine attacks s-adenosyl methionine and converts it to spermidine. Spermidine in turn attacks another s-adenosyl methionine and converts it to spermine. Putrescine is synthesized in small quantities by healthy living cells by the action of ornithine decarboxylase. The polyamines, of which putrescine is one of the simplest, appear to be growth factors necessary for cell division. (Wikipedia)
Structure
Thumb
Synonyms:
  • 1,4-Butanediamine
  • 1,4-Butylenediamine
  • 1,4-Diaminobutane
  • 1,4-Tetramethylenediamine
  • Butylenediamine
  • Diaminobutane
  • Putrescin
  • Tetramethyldiamine
  • Tetramethylenediamine
Chemical Formula: C4H12N2
Average Molecular Weight: 88.1515
Monoisotopic Molecular Weight: 88.100048394
InChI Key: KIDHWZJUCRJVML-UHFFFAOYSA-N
InChI:InChI=1S/C4H12N2/c5-3-1-2-4-6/h1-6H2
CAS number: 110-60-1
IUPAC Name:butane-1,4-diamine
Traditional IUPAC Name: putrescine
SMILES:NCCCCN
Chemical Taxonomy
Taxonomy DescriptionThis compound belongs to the class of organic compounds known as monoalkylamines. These are organic compounds containing an primary aliphatic amine group.
Kingdom Organic compounds
Super ClassOrganonitrogen compounds
Class Amines
Sub ClassPrimary amines
Direct Parent Monoalkylamines
Alternative Parents
Substituents
  • Hydrocarbon derivative
  • Primary aliphatic amine
  • Aliphatic acyclic compound
Molecular Framework Aliphatic acyclic compounds
External Descriptors
Physical Properties
State: Solid
Charge:2
Melting point: 27.5 °C
Experimental Properties:
PropertyValueSource
LogP:-0.70 [SANGSTER (1994)]PhysProp
Predicted Properties
PropertyValueSource
Water Solubility236.0 mg/mLALOGPS
logP-0.98ALOGPS
logP-0.85ChemAxon
logS0.43ALOGPS
pKa (Strongest Basic)10.51ChemAxon
Physiological Charge2ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area52.04 Å2ChemAxon
Rotatable Bond Count3ChemAxon
Refractivity27.38 m3·mol-1ChemAxon
Polarizability11.07 Å3ChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations: Cytoplasm
Reactions:
Pathways:
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (4 TMS)splash10-00di-1910000000-5694141cafbe39951441View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies)splash10-00di-1900000000-eeb4354250406805ebe6View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (4 TMS)splash10-00di-8910000000-af71049ab8358b0042ffView in MoNA
GC-MSGC-MS Spectrum - GC-MS (2 TMS)splash10-00di-8900000000-0ba23327cabd9b2815f5View in MoNA
GC-MSGC-MS Spectrum - GC-MS (3 TMS)splash10-00di-2900000000-234e1b62f4e830226779View in MoNA
GC-MSGC-MS Spectrum - GC-MS (4 TMS)splash10-00di-1900000000-e29f1004e27fcb9cfe7bView in MoNA
GC-MSGC-MS Spectrum - GC-MSNot Available
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-00di-9000000000-f718a117761c1c7ea80dView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-00di-9000000000-47752c8c65e2d83e78fbView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-00du-9000000000-3603b20551e892ad6c5eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - EI-B (HITACHI RMU-6L) , Positivesplash10-001i-9000000000-224d3a5d3fbe7e1c6bd4View in MoNA
LC-MS/MSLC-MS/MS Spectrum - EI-B (HITACHI RMU-6M) , Positivesplash10-001i-9000000000-5759f91b24f2e27cc466View in MoNA
LC-MS/MSLC-MS/MS Spectrum - CI-B (HITACHI M-80) , Positivesplash10-00di-9000000000-226a78b715ff64ec7067View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Positivesplash10-00dr-9000000000-0b342438cba3ac71bccbView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Positivesplash10-00di-9000000000-8add450cd915232f7353View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Positivesplash10-00di-9000000000-7a496471bdf7e391fdc8View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Positivesplash10-00di-9000000000-84da87b521647b4f42abView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Positivesplash10-001l-9000000000-3ca1e2cd5a7e125ac52eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Positivesplash10-000i-9000000000-830221d5ea74a91c32e1View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0079-9000000000-896934367d7bc245c8b3View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-05g0-9000000000-96d51f0aa46b0ab332d0View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0a4l-9000000000-de02b50a4b8a279875e4View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-000i-9000000000-73c448854a91ad5a9644View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-000i-9000000000-c600a93b8d737a254884View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-059f-9000000000-ce7ae61a17ef7cb9b2c2View in MoNA
MSMass Spectrum (Electron Ionization)splash10-001i-9000000000-2b410aa72c9bb951a79dView in MoNA
1D NMR13C NMR SpectrumNot Available
1D NMR1H NMR SpectrumNot Available
1D NMR1H NMR SpectrumNot Available
2D NMR[1H,1H] 2D NMR SpectrumNot Available
2D NMR[1H,13C] 2D NMR SpectrumNot Available
References
References:
  • El Baze P, Milano G, Verrando P, Renee N, Ortonne JP: Polyamine levels in normal human skin. A comparative study of pure epidermis, pure dermis, and suction blister fluid. Arch Dermatol Res. 1983;275(4):218-21. Pubmed: 6625645
  • Gimelli G, Giglio S, Zuffardi O, Alhonen L, Suppola S, Cusano R, Lo Nigro C, Gatti R, Ravazzolo R, Seri M: Gene dosage of the spermidine/spermine N(1)-acetyltransferase ( SSAT) gene with putrescine accumulation in a patient with a Xp21.1p22.12 duplication and keratosis follicularis spinulosa decalvans (KFSD). Hum Genet. 2002 Sep;111(3):235-41. Epub 2002 Aug 1. Pubmed: 12215835
  • Goldman SS, Volkow ND, Brodie J, Flamm ES: Putrescine metabolism in human brain tumors. J Neurooncol. 1986;4(1):23-9. Pubmed: 3746382
  • Halmekyto M, Alhonen L, Alakuijala L, Janne J: Transgenic mice over-producing putrescine in their tissues do not convert the diamine into higher polyamines. Biochem J. 1993 Apr 15;291 ( Pt 2):505-8. Pubmed: 8484731
  • Hamana, K. (1996). "Distribution of diaminopropane and acetylspermidine in Enterobacteriaceae." Can J Microbiol 42:107-114. Pubmed: 8742354
  • Harik SI, Sutton CH: Putrescine as a biochemical marker of malignant brain tumors. Cancer Res. 1979 Dec;39(12):5010-5. Pubmed: 227593
  • Janne J, Alhonen L, Keinanen TA, Pietila M, Uimari A, Pirinen E, Hyvonen MT, Jarvinen A: Animal disease models generated by genetic engineering of polyamine metabolism. J Cell Mol Med. 2005 Oct-Dec;9(4):865-82. Pubmed: 16364196
  • Janne J, Alhonen L, Pietila M, Keinanen TA: Genetic approaches to the cellular functions of polyamines in mammals. Eur J Biochem. 2004 Mar;271(5):877-94. Pubmed: 15009201
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Reeben M, Arbatova J, Palgi J, Miettinen R, Halmekyto M, Alhonen L, Janne J, Riekkinen P Sr, Saarma M: Induced expression of neurotrophins in transgenic mice overexpressing ornithine decarboxylase and overproducing putrescine. J Neurosci Res. 1996 Sep 1;45(5):542-8. Pubmed: 8875319
  • Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. Pubmed: 19212411
  • Takagi K, Tatsumi Y, Kitaichi K, Iwase M, Shibata E, Nakao M, Matsumoto T, Takagi K, Hasegawa T: A sensitive colorimetric assay for polyamines in erythrocytes using oat seedling polyamine oxidase. Clin Chim Acta. 2004 Feb;340(1-2):219-27. Pubmed: 14734216
  • Thiele I, Swainston N, Fleming RM, Hoppe A, Sahoo S, Aurich MK, Haraldsdottir H, Mo ML, Rolfsson O, Stobbe MD, Thorleifsson SG, Agren R, Bolling C, Bordel S, Chavali AK, Dobson P, Dunn WB, Endler L, Hala D, Hucka M, Hull D, Jameson D, Jamshidi N, Jonsson JJ, Juty N, Keating S, Nookaew I, Le Novere N, Malys N, Mazein A, Papin JA, Price ND, Selkov E Sr, Sigurdsson MI, Simeonidis E, Sonnenschein N, Smallbone K, Sorokin A, van Beek JH, Weichart D, Goryanin I, Nielsen J, Westerhoff HV, Kell DB, Mendes P, Palsson BO: A community-driven global reconstruction of human metabolism. Nat Biotechnol. 2013 Mar 3. doi: 10.1038/nbt.2488. Pubmed: 23455439
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Venza M, Visalli M, Cicciu D, Teti D: Determination of polyamines in human saliva by high-performance liquid chromatography with fluorescence detection. J Chromatogr B Biomed Sci Appl. 2001 Jun 5;757(1):111-7. Pubmed: 11419735
  • Vijayendran, C., Barsch, A., Friehs, K., Niehaus, K., Becker, A., Flaschel, E. (2008). "Perceiving molecular evolution processes in Escherichia coli by comprehensive metabolite and gene expression profiling." Genome Biol 9:R72. Pubmed: 18402659
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
  • Yamazaki H, Tsukahara T, Uki J, Matsuzaki S: Elevated levels of free putrescine and N1-acetylspermidine in cyst fluids of malignant brain tumours. J Neurol Neurosurg Psychiatry. 1986 Feb;49(2):209-10. Pubmed: 3950641
Synthesis Reference: Dudley, H. W.; Thorpe, W. V. Synthesis of N-methylputrescine and of putrescine. Biochemical Journal (1925), 19 845-9.
Material Safety Data Sheet (MSDS) Not Available
External Links:
ResourceLink
CHEBI ID17148
HMDB IDHMDB01414
Pubchem Compound ID1045
Kegg IDC02896
ChemSpider ID13837702
WikipediaPutrescine
BioCyc IDPUTRESCINE
EcoCyc IDPUTRESCINE
Ligand ExpoPUT

Enzymes

General function:
Involved in catalytic activity
Specific function:
Catalyzes the production of spermidine from putrescine and decarboxylated S-adenosylmethionine (dcSAM), which serves as an aminopropyl donor
Gene Name:
speE
Locus Tag:
PA1687
Molecular weight:
32.2 kDa
Reactions
S-adenosylmethioninamine + putrescine = 5'-S-methyl-5'-thioadenosine + spermidine.
General function:
Involved in carboxy-lyase activity
Specific function:
L-ornithine = putrescine + CO(2)
Gene Name:
speC
Locus Tag:
PA4519
Molecular weight:
43.6 kDa
Reactions
L-ornithine = putrescine + CO(2).
General function:
Involved in nucleotide binding
Specific function:
Part of the ABC transporter complex PotABCD involved in spermidine/putrescine import. Responsible for energy coupling to the transport system
Gene Name:
potA
Locus Tag:
PA3607
Molecular weight:
40 kDa
Reactions
ATP + H(2)O + polyamine(Out) = ADP + phosphate + polyamine(In).
General function:
Involved in transporter activity
Specific function:
Required for the activity of the bacterial periplasmic transport system of putrescine and spermidine
Gene Name:
potB
Locus Tag:
PA3608
Molecular weight:
32.7 kDa
General function:
Involved in transporter activity
Specific function:
Required for the activity of the bacterial periplasmic transport system of putrescine and spermidine
Gene Name:
potC
Locus Tag:
PA3609
Molecular weight:
27.7 kDa
General function:
Involved in transporter activity
Specific function:
Required for the activity of the bacterial periplasmic transport system of putrescine
Gene Name:
potI
Locus Tag:
PA0304
Molecular weight:
31.9 kDa
General function:
Involved in transporter activity
Specific function:
Required for the activity of the bacterial periplasmic transport system of putrescine
Gene Name:
potH
Locus Tag:
PA0303
Molecular weight:
32.4 kDa
General function:
Amino acid transport and metabolism
Specific function:
Part of the binding-protein-dependent transport system for putrescine. Probably responsible for energy coupling to the transport system
Gene Name:
potG
Locus Tag:
PA0302
Molecular weight:
42.8 kDa
General function:
Involved in transporter activity
Specific function:
Required for the activity of the bacterial periplasmic transport system of putrescine. Polyamine binding protein
Gene Name:
potF
Locus Tag:
PA1410
Molecular weight:
40.5 kDa
General function:
Involved in transporter activity
Specific function:
Required for the activity of the bacterial periplasmic transport system of putrescine and spermidine. Polyamine binding protein
Gene Name:
potD
Locus Tag:
PA3610
Molecular weight:
39.3 kDa

Transporters

General function:
Involved in nucleotide binding
Specific function:
Part of the ABC transporter complex PotABCD involved in spermidine/putrescine import. Responsible for energy coupling to the transport system
Gene Name:
potA
Locus Tag:
PA3607
Molecular weight:
40 kDa
Reactions
ATP + H(2)O + polyamine(Out) = ADP + phosphate + polyamine(In).
General function:
Involved in transporter activity
Specific function:
Required for the activity of the bacterial periplasmic transport system of putrescine and spermidine
Gene Name:
potB
Locus Tag:
PA3608
Molecular weight:
32.7 kDa
General function:
Involved in transporter activity
Specific function:
Required for the activity of the bacterial periplasmic transport system of putrescine and spermidine
Gene Name:
potC
Locus Tag:
PA3609
Molecular weight:
27.7 kDa
General function:
Involved in transporter activity
Specific function:
Required for the activity of the bacterial periplasmic transport system of putrescine
Gene Name:
potI
Locus Tag:
PA0304
Molecular weight:
31.9 kDa
General function:
Involved in transporter activity
Specific function:
Required for the activity of the bacterial periplasmic transport system of putrescine
Gene Name:
potH
Locus Tag:
PA0303
Molecular weight:
32.4 kDa
General function:
Involved in transport
Specific function:
Imports putrescine
Gene Name:
puuP
Locus Tag:
PA2041
Molecular weight:
50.1 kDa
General function:
Amino acid transport and metabolism
Specific function:
Part of the binding-protein-dependent transport system for putrescine. Probably responsible for energy coupling to the transport system
Gene Name:
potG
Locus Tag:
PA0302
Molecular weight:
42.8 kDa
General function:
Involved in transporter activity
Specific function:
Required for the activity of the bacterial periplasmic transport system of putrescine. Polyamine binding protein
Gene Name:
potF
Locus Tag:
PA1410
Molecular weight:
40.5 kDa
General function:
Involved in transporter activity
Specific function:
Required for the activity of the bacterial periplasmic transport system of putrescine and spermidine. Polyamine binding protein
Gene Name:
potD
Locus Tag:
PA3610
Molecular weight:
39.3 kDa