Record Information
Version 1.0
Update Date 1/22/2018 12:54:54 PM
Metabolite IDPAMDB000372
Identification
Name: Glucose 6-phosphate
Description:Glucose 6 phosphate (alpha-D-glucose 6 phosphate or G6P) is the alpha-anomer of glucose-6-phosphate. There are two anomers of glucose 6 phosphate, the alpha anomer and the beta anomer Glucose-6-phosphate is a phosphorylated glucose molecule on carbon 6. When glucose enters a cell, it is immediately phosphorylated to G6P. This is catalyzed with hexokinase enzymes, thus consuming one ATP. A major reason for immediate phosphorylation of the glucose is so that it cannot diffuse out of the cell. The phosphorylation adds a charged group so the G6P cannot easily cross cell membranes. G6P can travel down two metabolic pathways, glycolysis and the pentose phosphate pathway. Note, the molecule now has 2 phosphoryl groups attached. The addition of the 2nd phosphoryl group is an irreversible step, so once this happens G6P will enter glycolysis and be turned into pyruvate (ATP production occurs). After being converted to G6P, phosphoglucose mutase (isomerase) can turn the molecule into glucose-1-phosphate. Glucose-1-phosphate can then be combined with uridine triphosphate (UTP) to form UDP-glucose. This reaction is driven by the hydrolysis of pyrophosphate that is released in the reaction. (Wikipedia)
Structure
Thumb
Synonyms:
  • β-D-glucose-6-P
  • A-D-glucose 6- phosphate
  • a-D-Glucose 6- phosphoric acid
  • A-D-Glucose 6-phosphate
  • a-D-Glucose 6-phosphoric acid
  • A-D-Glucose-6-phosphate
  • a-D-Glucose-6-phosphoric acid
  • a-D-Hexose 6-phosphate
  • a-D-Hexose 6-phosphoric acid
  • Alpha-D-Glucose 6-phosphate
  • alpha-D-Glucose 6-phosphoric acid
  • Alpha-D-Hexose 6-phosphate
  • alpha-D-Hexose 6-phosphoric acid
  • b-D-Glucose-6-P
  • Beta-D-Glucose-6-P
  • D(+)-Glucopyranose 6-phosphate
  • D(+)-Glucopyranose 6-phosphoric acid
  • D-Glucose 6-phosphate
  • D-Glucose 6-phosphoric acid
  • D-Glucose-6-dihydrogen phosphate
  • D-Glucose-6-dihydrogen phosphoric acid
  • D-Glucose-6-P
  • D-Glucose-6-phosphate
  • D-Glucose-6-phosphoric acid
  • D-Hexose 6-phosphate
  • D-Hexose 6-phosphoric acid
  • Glucose 6-phosphate
  • Glucose 6-phosphoric acid
  • Glucose-6-P
  • Glucose-6-phosphate
  • Glucose-6-phosphoric acid
  • Robison ester
  • α-D-Glucose 6-phosphate
  • α-D-Glucose 6-phosphoric acid
  • α-D-Hexose 6-phosphate
  • α-D-Hexose 6-phosphoric acid
  • β-D-Glucose-6-P
Chemical Formula: C6H13O9P
Average Molecular Weight: 260.1358
Monoisotopic Molecular Weight: 260.029718526
InChI Key: NBSCHQHZLSJFNQ-GASJEMHNSA-N
InChI:InChI=1S/C6H13O9P/c7-3-2(1-14-16(11,12)13)15-6(10)5(9)4(3)8/h2-10H,1H2,(H2,11,12,13)/t2-,3-,4+,5-,6?/m1/s1
CAS number: 56-73-5
IUPAC Name:{[(2R,3S,4S,5R)-3,4,5,6-tetrahydroxyoxan-2-yl]methoxy}phosphonic acid
Traditional IUPAC Name: glucose 6-phosphate
SMILES:OC1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H](O)[C@H]1O
Chemical Taxonomy
Taxonomy DescriptionThis compound belongs to the class of organic compounds known as monosaccharide phosphates. These are monosaccharides comprising a phosphated group linked to the carbohydrate unit.
Kingdom Organic compounds
Super ClassOrganooxygen compounds
Class Carbohydrates and carbohydrate conjugates
Sub ClassMonosaccharides
Direct Parent Monosaccharide phosphates
Alternative Parents
Substituents
  • Monosaccharide phosphate
  • Monoalkyl phosphate
  • Alkyl phosphate
  • Phosphoric acid ester
  • Oxane
  • Organic phosphoric acid derivative
  • Organic phosphate
  • Secondary alcohol
  • Polyol
  • Hemiacetal
  • 1,2-diol
  • Oxacycle
  • Organoheterocyclic compound
  • Hydrocarbon derivative
  • Alcohol
  • Aliphatic heteromonocyclic compound
Molecular Framework Aliphatic heteromonocyclic compounds
External Descriptors
Physical Properties
State: Liquid
Charge:-2
Melting point: Not Available
Experimental Properties:
PropertyValueSource
Predicted Properties
PropertyValueSource
Water Solubility31.4 mg/mLALOGPS
logP-2.1ALOGPS
logP-3.1ChemAxon
logS-0.92ALOGPS
pKa (Strongest Acidic)1.22ChemAxon
pKa (Strongest Basic)-3.6ChemAxon
Physiological Charge-2ChemAxon
Hydrogen Acceptor Count8ChemAxon
Hydrogen Donor Count6ChemAxon
Polar Surface Area156.91 Å2ChemAxon
Rotatable Bond Count3ChemAxon
Refractivity46.8 m3·mol-1ChemAxon
Polarizability20.56 Å3ChemAxon
Number of Rings1ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations: Cytoplasm
Reactions:
Pathways:
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (6 TMS)splash10-000b-1932000000-59f4881b86595037d013View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (6 TMS)splash10-0f7t-1933000000-4894135f21c21c369428View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (6 TMS; 1 MEOX)splash10-00di-9522000000-81266970683faa1f2aafView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (6 TMS; 1 MEOX)splash10-00di-9412000000-2f2a0e772025b48bf6f3View in MoNA
GC-MSGC-MS Spectrum - GC-MS (1 MEOX; 6 TMS)splash10-000j-1956000000-692b4df2b9c16f6a780cView in MoNA
GC-MSGC-MS Spectrum - GC-MS (1 MEOX; 6 TMS)splash10-000i-1957000000-bd94955ffc1474153a48View in MoNA
GC-MSGC-MS Spectrum - GC-MS (6 TMS)splash10-0v0a-0596000000-676527ddfc1d596e78f8View in MoNA
GC-MSGC-MS Spectrum - GC-MSNot Available
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, N/A (Annotated)splash10-03di-0090000000-5653def80d1b5ff0eebbView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, N/A (Annotated)splash10-000b-9200000000-66741d773ac31b347625View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, N/A (Annotated)splash10-000t-9000000000-068809fcfaff0d387e6bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negativesplash10-0a4i-1090000000-d6e539d78b38c01dafeaView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negativesplash10-0002-9210000000-8b9ff1c5095f48a81fefView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negativesplash10-0002-9000000000-f6e1147852f75db4c0a4View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Negativesplash10-002b-9000000000-1c52fd659f8a2b795e51View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Negativesplash10-004i-9000000000-d3f6a05e18ea6d56c56dView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Positivesplash10-0006-0890000000-5f3047c92c970dfe6927View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Positivesplash10-004i-0900000000-b84eb7685667fa7ee85eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Positivesplash10-004i-2900000000-d4a0d51bb6e2da28533aView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Positivesplash10-004i-6900000000-dfb5bcbd9a7439c32352View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Positivesplash10-03gi-9600000000-a0922c82e185f6b5aa67View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-IT (LC/MSD Trap XCT, Agilent Technologies) , Positivesplash10-0006-0290000000-7ac7b397c52f29cd3822View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-IT (LC/MSD Trap XCT, Agilent Technologies) , Positivesplash10-052b-6590000000-5cdbc23378480ac55c4fView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-IT (LC/MSD Trap XCT, Agilent Technologies) , Positivesplash10-004i-1900000000-b74270f21c6086362227View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Negativesplash10-002b-9000000000-bc69e8fa215a3b82dcf2View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, NegativeNot Available
1D NMR13C NMR SpectrumNot Available
1D NMR1H NMR SpectrumNot Available
2D NMR[1H,1H] 2D NMR SpectrumNot Available
2D NMR[1H,13C] 2D NMR SpectrumNot Available
References
References:
  • Benkoel L, Chamlian A, Barrat E, Laffargue P: The use of ferricyanide for the electron microscopic demonstration of dehydrogenases in human steroidogenic cells. J Histochem Cytochem. 1976 Nov;24(11):1194-203. Pubmed: 1002973
  • Boden G, Chen X, Ruiz J, White JV, Rossetti L: Mechanisms of fatty acid-induced inhibition of glucose uptake. J Clin Invest. 1994 Jun;93(6):2438-46. Pubmed: 8200979
  • Boden G, Jadali F, White J, Liang Y, Mozzoli M, Chen X, Coleman E, Smith C: Effects of fat on insulin-stimulated carbohydrate metabolism in normal men. J Clin Invest. 1991 Sep;88(3):960-6. Pubmed: 1885781
  • Brehm A, Krssak M, Schmid AI, Nowotny P, Waldhausl W, Roden M: Increased lipid availability impairs insulin-stimulated ATP synthesis in human skeletal muscle. Diabetes. 2006 Jan;55(1):136-40. Pubmed: 16380486
  • Buchholz, A., Takors, R., Wandrey, C. (2001). "Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques." Anal Biochem 295:129-137. Pubmed: 11488613
  • Chang PY, Jensen J, Printz RL, Granner DK, Ivy JL, Moller DE: Overexpression of hexokinase II in transgenic mice. Evidence that increased phosphorylation augments muscle glucose uptake. J Biol Chem. 1996 Jun 21;271(25):14834-9. Pubmed: 8662926
  • Cigolini M, Bonora E, Querena M, Moghetti P, Cacciatori V, Zancanaro C, Benati D, Muggeo M: Differences in glucose metabolic enzyme activities in human adipose tissue from abdominal and gluteal regions. Metabolism. 1988 Sep;37(9):820-3. Pubmed: 3419322
  • Cline GW, Petersen KF, Krssak M, Shen J, Hundal RS, Trajanoski Z, Inzucchi S, Dresner A, Rothman DL, Shulman GI: Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med. 1999 Jul 22;341(4):240-6. Pubmed: 10413736
  • Fortpied J, Maliekal P, Vertommen D, Van Schaftingen E: Magnesium-dependent phosphatase-1 is a protein-fructosamine-6-phosphatase potentially involved in glycation repair. J Biol Chem. 2006 Jul 7;281(27):18378-85. Epub 2006 May 1. Pubmed: 16670083
  • Foster JD, Pederson BA, Nordlie RC: Glucose-6-phosphatase structure, regulation, and function: an update. Proc Soc Exp Biol Med. 1997 Sep;215(4):314-32. Pubmed: 9270716
  • Ishii, N., Nakahigashi, K., Baba, T., Robert, M., Soga, T., Kanai, A., Hirasawa, T., Naba, M., Hirai, K., Hoque, A., Ho, P. Y., Kakazu, Y., Sugawara, K., Igarashi, S., Harada, S., Masuda, T., Sugiyama, N., Togashi, T., Hasegawa, M., Takai, Y., Yugi, K., Arakawa, K., Iwata, N., Toya, Y., Nakayama, Y., Nishioka, T., Shimizu, K., Mori, H., Tomita, M. (2007). "Multiple high-throughput analyses monitor the response of E. coli to perturbations." Science 316:593-597. Pubmed: 17379776
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Lehto M, Xiang K, Stoffel M, Espinosa R 3rd, Groop LC, Le Beau MM, Bell GI: Human hexokinase II: localization of the polymorphic gene to chromosome 2. Diabetologia. 1993 Dec;36(12):1299-302. Pubmed: 8307259
  • Nakayama Y, Kinoshita A, Tomita M: Dynamic simulation of red blood cell metabolism and its application to the analysis of a pathological condition. Theor Biol Med Model. 2005 May 9;2(1):18. Pubmed: 15882454
  • Peng, L., Arauzo-Bravo, M. J., Shimizu, K. (2004). "Metabolic flux analysis for a ppc mutant Escherichia coli based on 13C-labelling experiments together with enzyme activity assays and intracellular metabolite measurements." FEMS Microbiol Lett 235:17-23. Pubmed: 15158257
  • Petersen KF, Hendler R, Price T, Perseghin G, Rothman DL, Held N, Amatruda JM, Shulman GI: 13C/31P NMR studies on the mechanism of insulin resistance in obesity. Diabetes. 1998 Mar;47(3):381-6. Pubmed: 9519743
  • Price TB, Laurent D, Petersen KF: 13C/31P NMR studies on the role of glucose transport/phosphorylation in human glycogen supercompensation. Int J Sports Med. 2003 May;24(4):238-44. Pubmed: 12784164
  • Roden M: How free fatty acids inhibit glucose utilization in human skeletal muscle. News Physiol Sci. 2004 Jun;19:92-6. Pubmed: 15143200
  • Roussel R, Carlier PG, Wary C, Velho G, Bloch G: Evidence for 100% 13C NMR visibility of glucose in human skeletal muscle. Magn Reson Med. 1997 Jun;37(6):821-4. Pubmed: 9178231
  • Schalin-Jantti C, Harkonen M, Groop LC: Impaired activation of glycogen synthase in people at increased risk for developing NIDDM. Diabetes. 1992 May;41(5):598-604. Pubmed: 1568529
  • Turvey EA, Heigenhauser GJ, Parolin M, Peters SJ: Elevated n-3 fatty acids in a high-fat diet attenuate the increase in PDH kinase activity but not PDH activity in human skeletal muscle. J Appl Physiol. 2005 Jan;98(1):350-5. Pubmed: 15591305
  • Vaag A, Damsbo P, Hother-Nielsen O, Beck-Nielsen H: Hyperglycaemia compensates for the defects in insulin-mediated glucose metabolism and in the activation of glycogen synthase in the skeletal muscle of patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1992 Jan;35(1):80-8. Pubmed: 1541385
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Vestergaard H, Bjorbaek C, Hansen T, Larsen FS, Granner DK, Pedersen O: Impaired activity and gene expression of hexokinase II in muscle from non-insulin-dependent diabetes mellitus patients. J Clin Invest. 1995 Dec;96(6):2639-45. Pubmed: 8675629
  • Vijayendran, C., Barsch, A., Friehs, K., Niehaus, K., Becker, A., Flaschel, E. (2008). "Perceiving molecular evolution processes in Escherichia coli by comprehensive metabolite and gene expression profiling." Genome Biol 9:R72. Pubmed: 18402659
  • Villar-Palasi C, Guinovart JJ: The role of glucose 6-phosphate in the control of glycogen synthase. FASEB J. 1997 Jun;11(7):544-58. Pubmed: 9212078
Synthesis Reference: Not Available
Material Safety Data Sheet (MSDS) Not Available
External Links:
ResourceLink
CHEBI ID17665
HMDB IDHMDB01401
Pubchem Compound ID439284
Kegg IDC00092
ChemSpider ID5743
WikipediaGlucose 6-phosphate
BioCyc IDGLC-6-P
EcoCyc IDGLC-6-P

Enzymes

General function:
Involved in glucose-6-phosphate isomerase activity
Specific function:
D-glucose 6-phosphate = D-fructose 6- phosphate
Gene Name:
pgi
Locus Tag:
PA4732
Molecular weight:
61.9 kDa
Reactions
D-glucose 6-phosphate = D-fructose 6-phosphate.
General function:
Involved in glucokinase activity
Specific function:
Not highly important in Pseudomonas aeruginosa as glucose is transported into the cell by the PTS system already as glucose 6-phosphate
Gene Name:
glk
Locus Tag:
PA3193
Molecular weight:
34.6 kDa
Reactions
ATP + D-glucose = ADP + D-glucose 6-phosphate.
General function:
Involved in glucose-6-phosphate dehydrogenase activity
Specific function:
D-glucose 6-phosphate + NADP(+) = D-glucono- 1,5-lactone 6-phosphate + NADPH
Gene Name:
zwf
Locus Tag:
PA3183
Molecular weight:
55.6 kDa
Reactions
D-glucose 6-phosphate + NADP(+) = 6-phospho-D-glucono-1,5-lactone + NADPH.
General function:
Involved in intramolecular transferase activity, phosphotransferases
Specific function:
This enzyme participates in both the breakdown and synthesis of glucose
Gene Name:
pgm
Locus Tag:
PA5131
Molecular weight:
55.6 kDa
Reactions
Alpha-D-glucose 1-phosphate = alpha-D-glucose 6-phosphate.

Transporters