Record Information
Version 1.0
Update Date 1/22/2018 11:54:54 AM
Metabolite IDPAMDB000131
Identification
Name: 3,4-Dihydroxyphenylglycol
Description:(S)-3,5-Dihydroxyphenylglycine or DHPG is a potent agonist of group metabotropic glutamate receptors (mGluRs). It is an intermediate in tyrosine metabolism.
Structure
Thumb
Synonyms:
  • (3,4-Dihydroxyphenyl)ethylene glycol
  • 1-(3,4-Dihydroxyphenyl)-1,2-ethanediol
  • 3,4-Dihydroxyphenethyl glycol
  • 3,4-Dihydroxyphenylethyl glycol
  • 3,4-Dihydroxyphenylethyleneglycol
  • 4-(1,2-Dihydroxyethyl)-1,2-benzenediol
  • DHPG
  • DL-3,4-Dihydroxyphenylglycol
  • DOPEG
Chemical Formula: C8H10O4
Average Molecular Weight: 170.1626
Monoisotopic Molecular Weight: 170.057908808
InChI Key: MTVWFVDWRVYDOR-UHFFFAOYSA-N
InChI:InChI=1S/C8H10O4/c9-4-8(12)5-1-2-6(10)7(11)3-5/h1-3,8-12H,4H2
CAS number: 28822-73-3
IUPAC Name:4-(1,2-dihydroxyethyl)benzene-1,2-diol
Traditional IUPAC Name: 3,4-dihydroxyphenylglycol
SMILES:OCC(O)C1=CC(O)=C(O)C=C1
Chemical Taxonomy
Taxonomy DescriptionThis compound belongs to the class of organic compounds known as catechols. These are compounds containing a 1,2-benzenediol moiety.
Kingdom Organic compounds
Super ClassBenzenoids
Class Benzene and substituted derivatives
Sub ClassPhenols and derivatives
Direct Parent Catechols
Alternative Parents
Substituents
  • 1,2-diphenol
  • Secondary alcohol
  • 1,2-diol
  • Hydrocarbon derivative
  • Aromatic alcohol
  • Primary alcohol
  • Organooxygen compound
  • Alcohol
  • Aromatic homomonocyclic compound
Molecular Framework Aromatic homomonocyclic compounds
External Descriptors
Physical Properties
State: Solid
Charge:0
Melting point: 130-132 °C
Experimental Properties:
PropertyValueSource
LogP:-1.01 [HANSCH,C ET AL. (1995)]PhysProp
Predicted Properties
PropertyValueSource
Water Solubility16.7 mg/mLALOGPS
logP-0.72ALOGPS
logP-0.032ChemAxon
logS-1ALOGPS
pKa (Strongest Acidic)9.21ChemAxon
pKa (Strongest Basic)-3ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count4ChemAxon
Polar Surface Area80.92 Å2ChemAxon
Rotatable Bond Count2ChemAxon
Refractivity42.8 m3·mol-1ChemAxon
Polarizability16.57 Å3ChemAxon
Number of Rings1ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations: Cytoplasm
Reactions:
Pathways:
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-MS (4 TMS)splash10-0a59-0965000000-0c949d05cfff1600a5dbView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-00fr-2900000000-fbceba2f96c4ee1154aeView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-000i-9300000000-dd28ad7f56904a5c7c7eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-0bvi-9200000000-b9f4f1a5509344427d53View in MoNA
LC-MS/MSLC-MS/MS Spectrum - EI-B (HITACHI M-52) , Positivesplash10-00y3-8900000000-0cb05419b964f5d6016bView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-00di-0900000000-785c9bdff21d7558b9b4View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0fk9-1900000000-953cf944dd232b8d7832View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0zg0-7900000000-cb8414fe82a1c814f764View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-014i-0900000000-a3cd8f79f0fba00900c3View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0aor-1900000000-ecff175233ea65fe5f8fView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4i-7900000000-f8265f1946f33cedd546View in MoNA
1D NMR1H NMR SpectrumNot Available
2D NMR[1H,13C] 2D NMR SpectrumNot Available
References
References:
  • Baskys A, Fang L, Bayazitov I: Activation of neuroprotective pathways by metabotropic group I glutamate receptors: a potential target for drug discovery? Ann N Y Acad Sci. 2005 Aug;1053:55-73. Pubmed: 16179509
  • Divers WA Jr, Wilkes MM, Babaknia A, Yen SS: Maternal smoking and elevation of catecholamines and metabolites in the amniotic fluid. Am J Obstet Gynecol. 1981 Nov 15;141(6):625-8. Pubmed: 7315891
  • Divers WA, Wilkes MM, Babaknia A, Hill LM, Quilligan EJ, Yen SS: Amniotic fluid catecholamines and metabolites in intrauterine growth retardation. Am J Obstet Gynecol. 1981 Nov 15;141(6):608-10. Pubmed: 7315888
  • Eisenhofer G, Brush JE, Cannon RO 3rd, Stull R, Kopin IJ, Goldstein DS: Plasma dihydroxyphenylalanine and total body and regional noradrenergic activity in humans. J Clin Endocrinol Metab. 1989 Feb;68(2):247-55. Pubmed: 2563731
  • Eisenhofer G, Kopin IJ, Goldstein DS: Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev. 2004 Sep;56(3):331-49. Pubmed: 15317907
  • Elsworth JD, Roth RH, Redmond DE Jr: Relative importance of 3-methoxy-4-hydroxyphenylglycol and 3,4-dihydroxyphenylglycol as norepinephrine metabolites in rat, monkey, and humans. J Neurochem. 1983 Sep;41(3):786-93. Pubmed: 6875564
  • Esler MD, Lambert GW, Ferrier C, Kaye DM, Wallin BG, Kalff V, Kelly MJ, Jennings GL: Central nervous system noradrenergic control of sympathetic outflow in normotensive and hypertensive humans. Clin Exp Hypertens. 1995 Jan-Feb;17(1-2):409-23. Pubmed: 7735286
  • Graham PE, Smythe GA, Edwards GA, Lazarus L: Laboratory diagnosis of phaeochromocytoma: which analytes should we measure? Ann Clin Biochem. 1993 Mar;30 ( Pt 2):129-34. Pubmed: 8466142
  • Julien C, Rodriguez C, Sacquet J, Cuisinaud G, Sassard J: Liquid-chromatographic determination of free and total 3,4-dihydroxyphenylglycol and 3-methoxy-4-hydroxyphenylglycol in urine. Clin Chem. 1988 May;34(5):966-9. Pubmed: 3370800
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Loo H, Scatton B, Dennis T, Benkelfat C, Gay C, Poirier-Littre MF, Garreau M, Vanelle JM, Olie JP, Deniker P: [Study of noradrenaline metabolism in depressed patients by the determination of plasma dihydroxyphenylethylene glycol]. Encephale. 1983;9(4):297-316. Pubmed: 6671452
  • Machida M, Sakaguchi A, Kamada S, Fujimoto T, Takechi S, Kakinoki S, Nomura A: Simultaneous analysis of human plasma catecholamines by high-performance liquid chromatography with a reversed-phase triacontylsilyl silica column. J Chromatogr B Analyt Technol Biomed Life Sci. 2006 Jan 18;830(2):249-54. Epub 2005 Nov 21. Pubmed: 16301006
  • Nakada T, Sasagawa I, Kubota Y, Suzuki H, Ishigooka M, Watanabe M: Dihydroxyphenylglycol in pheochromocytoma: its diagnostic use for norepinephrine dominant tumor. J Urol. 1996 Jan;155(1):14-8. Pubmed: 7490813
  • Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. Pubmed: 19212411
Synthesis Reference: Hunter L W; Rorie D K; Yaksh T L; Tyce G M Concurrent separation of catecholamines, dihydroxyphenylglycol, vasoactive intestinal peptide, and neuropeptide Y in superfusate and tissue extract. Analytical biochemistry (1988), 173(2), 340-52.
Material Safety Data Sheet (MSDS) Download (PDF)
External Links:
ResourceLink
CHEBI ID1387
HMDB IDHMDB00318
Pubchem Compound ID91528
Kegg IDC05576
ChemSpider ID82648
WikipediaDHPG
BioCyc IDNot Available

Enzymes

General function:
Involved in zinc ion binding
Specific function:
Has high formaldehyde dehydrogenase activity in the presence of glutathione and catalyzes the oxidation of normal alcohols in a reaction that is not GSH-dependent. In addition, hemithiolacetals other than those formed from GSH, including omega-thiol fatty acids, also are substrates
Gene Name:
frmA
Locus Tag:
PA3629
Molecular weight:
39.2 kDa
Reactions
S-(hydroxymethyl)glutathione + NAD(P)(+) = S-formylglutathione + NAD(P)H.
An alcohol + NAD(+) = an aldehyde or ketone + NADH.