Record Information
Version 1.0
Update Date 1/22/2018 11:54:54 AM
Metabolite IDPAMDB110453
Identification
Name: 3,4-dihydroxyphenylacetate
Description:A dihydroxy monocarboxylic acid anion that is the conjugate base of (3,4-dihydroxyphenyl)acetic acid, arising from deprotonation of the carboxy group.
Structure
Thumb
Synonyms:
  • 3,4-dihydroxyphenylacetic acid
  • homoprotocatechuate
  • dihydroxyphenylacetic acid
Chemical Formula: C8H7O4
Average Molecular Weight: 167.14
Monoisotopic Molecular Weight: 168.0422587452
InChI Key: CFFZDZCDUFSOFZ-UHFFFAOYSA-M
InChI: InChI=1S/C8H8O4/c9-6-2-1-5(3-7(6)10)4-8(11)12/h1-3,9-10H,4H2,(H,11,12)/p-1
CAS number: 102-32-9
IUPAC Name:(3,4-dihydroxyphenyl)acetate
Traditional IUPAC Name: 3,4 dihydroxyphenylacetic acid
SMILES:C([O-])(=O)CC1(C=CC(=C(C=1)O)O)
Chemical Taxonomy
Taxonomy DescriptionThis compound belongs to the class of chemical entities known as catechols. These are compounds containing a 1,2-benzenediol moiety.
Kingdom Chemical entities
Super ClassOrganic compounds
Class Benzenoids
Sub ClassPhenols
Direct Parent Catechols
Alternative Parents
Substituents
  • Catechol
  • 1-hydroxy-4-unsubstituted benzenoid
  • 1-hydroxy-2-unsubstituted benzenoid
  • Monocyclic benzene moiety
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Carboxylic acid derivative
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aromatic homomonocyclic compound
Molecular Framework Aromatic homomonocyclic compounds
External Descriptors
Physical Properties
State: Solid
Charge:-1
Melting point: 168 °C
Experimental Properties:
PropertyValueReference
Melting Point168 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility4 mg/mLNot Available
LogP0.98SANGSTER (1994)
Predicted Properties
PropertyValueSource
Water Solubility7.23 mg/mLALOGPS
logP0.93ALOGPS
logP1ChemAxon
logS-1.4ALOGPS
pKa (Strongest Acidic)3.61ChemAxon
pKa (Strongest Basic)-6.3ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area77.76 Å2ChemAxon
Rotatable Bond Count2ChemAxon
Refractivity41.33 m3·mol-1ChemAxon
Polarizability15.71 Å3ChemAxon
Number of Rings1ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations: Not Available
Reactions:
Pathways:
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (3 TMS)splash10-004i-0942000000-54f714e694a7c3daeaf4View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies)splash10-004i-0931000000-c4bb79d921fb42cf1b40View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (3 TMS)splash10-00di-9310000000-9490bd0ec921894341f4View in MoNA
GC-MSGC-MS Spectrum - GC-MS (3 TMS)splash10-004i-0952000000-d45a1420d6ae61cb9169View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-00di-0900000000-3e7377f36ca2547f4885View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-00di-2900000000-60e1fc55d54131c2923eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-0fi0-9400000000-c63542b296bac95866e2View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0udi-0900000000-579796710abc38249c3aView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0fk9-0900000000-22f8a4f4efd0f10804b5View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0zmi-9700000000-42b3de6bccbc10ad7b48View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0udi-0900000000-579796710abc38249c3aView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0fk9-0900000000-22f8a4f4efd0f10804b5View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0zmi-9700000000-42b3de6bccbc10ad7b48View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-01b9-0900000000-a59d2cab0d3d859760a7View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-00xs-1900000000-6f630370c11294562cb7View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4l-9800000000-a45be46f3b52664dd4d1View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-01b9-0900000000-a59d2cab0d3d859760a7View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-00xs-1900000000-6f630370c11294562cb7View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4l-9800000000-a45be46f3b52664dd4d1View in MoNA
1D NMR1H NMR SpectrumNot Available
2D NMR[1H,13C] 2D NMR SpectrumNot Available
References
References:
  • Goldstein DS, Eisenhofer G, Kopin IJ: Sources and significance of plasma levels of catechols and their metabolites in humans. J Pharmacol Exp Ther. 2003 Jun;305(3):800-11. Epub 2003 Mar 20. [12649306 ]
  • Panholzer TJ, Beyer J, Lichtwald K: Coupled-column liquid chromatographic analysis of catecholamines, serotonin, and metabolites in human urine. Clin Chem. 1999 Feb;45(2):262-8. [9931050 ]
  • Raskind MA, Peskind ER, Holmes C, Goldstein DS: Patterns of cerebrospinal fluid catechols support increased central noradrenergic responsiveness in aging and Alzheimer's disease. Biol Psychiatry. 1999 Sep 15;46(6):756-65. [10494443 ]
  • Sjoberg S, Eriksson M, Nordin C: L-thyroxine treatment and neurotransmitter levels in the cerebrospinal fluid of hypothyroid patients: a pilot study. Eur J Endocrinol. 1998 Nov;139(5):493-7. [9849813 ]
  • Eklundh T, Eriksson M, Sjoberg S, Nordin C: Monoamine precursors, transmitters and metabolites in cerebrospinal fluid: a prospective study in healthy male subjects. J Psychiatr Res. 1996 May-Jun;30(3):201-8. [8884658 ]
  • Ebinger G, Michotte Y, Herregodts P: The significance of homovanillic acid and 3,4-dihydroxyphenylacetic acid concentrations in human lumbar cerebrospinal fluid. J Neurochem. 1987 Jun;48(6):1725-9. [3572399 ]
  • Van Loon GR, De Souza EB, Kim C: Alterations in brain dopamine and serotonin metabolism during the development of tolerance to human beta-endorphin in rats. Can J Physiol Pharmacol. 1978 Dec;56(6):1067-71. [743624 ]
  • Braestrup C: Biochemical differentiation of amphetamine vs methylphenidate and nomifensine in rats. J Pharm Pharmacol. 1977 Aug;29(8):463-70. [19594 ]
  • Nakao N, Shintani-Mizushima A, Kakishita K, Itakura T: The ability of grafted human sympathetic neurons to synthesize and store dopamine: a potential mechanism for the clinical effect of sympathetic neuron autografts in patients with Parkinson's disease. Exp Neurol. 2004 Jul;188(1):65-73. [15191803 ]
  • Annunziato LA, Wuerthele SM, Moore KE: Comparative effects of penfluridol on circling behavior and striatal DOPAC and serum prolactin concentrations in the rat. Eur J Pharmacol. 1978 Aug 1;50(3):187-92. [567584 ]
  • De Simoni MG, Guardabasso V, Misterek K, Algeri S: Similarities and differences between D-ALA2 MET5 enkephalin amide and morphine in the induction of tolerance to their effects on catalepsy and on dopamine metabolism in the rat brain. Naunyn Schmiedebergs Arch Pharmacol. 1982 Nov;321(2):105-11. [6891440 ]
  • Gramsch C, Blasig J, Herz A: Changes in striatal dopamine metabolism during precipitated morphine withdrawal. Eur J Pharmacol. 1977 Aug 1;44(3):231-40. [560969 ]
  • Fornstedt B, Brun A, Rosengren E, Carlsson A: The apparent autoxidation rate of catechols in dopamine-rich regions of human brains increases with the degree of depigmentation of substantia nigra. J Neural Transm Park Dis Dement Sect. 1989;1(4):279-95. [2597314 ]
  • Garrett MC, Soares-da-Silva P: Increased cerebrospinal fluid dopamine and 3,4-dihydroxyphenylacetic acid levels in Huntington's disease: evidence for an overactive dopaminergic brain transmission. J Neurochem. 1992 Jan;58(1):101-6. [1309230 ]
  • Massotti M, Longo VG: Role of the dopaminergic system in the cataleptogenic action of bulbocapnine. J Pharm Pharmacol. 1979 Oct;31(10):691-5. [41042 ]
  • Tekes K, Tothfalusi L, Gaal J, Magyar K: Effect of MAO inhibitors on the uptake and metabolism of dopamine in rat and human brain. Pol J Pharmacol Pharm. 1988 Nov-Dec;40(6):653-8. [3152003 ]
  • Rubinstein M, Phillips TJ, Bunzow JR, Falzone TL, Dziewczapolski G, Zhang G, Fang Y, Larson JL, McDougall JA, Chester JA, Saez C, Pugsley TA, Gershanik O, Low MJ, Grandy DK: Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell. 1997 Sep 19;90(6):991-1001. [9323127 ]
  • Hutson PH, Curzon G: Dopamine metabolites in rat cisternal cerebrospinal fluid: major contribution from extrastriatal dopamine neurones. J Neurochem. 1986 Jan;46(1):186-90. [2415677 ]
  • Thurmond JB, Brown JW: Effect of brain monoamine precursors on stress-induced behavioral and neurochemical changes in aged mice. Brain Res. 1984 Mar 26;296(1):93-102. [6201238 ]
  • Kogan BM, Tkachenko AA, Drozdov AZ, Andrianova EP, Filatova TS, Man'kovskaia IV, Kovaleva IA: [Monoamine metabolism in different forms of paraphilias] Zh Nevropatol Psikhiatr Im S S Korsakova. 1995;95(6):52-6. [8788979 ]
  • Florang VR, Rees JN, Brogden NK, Anderson DG, Hurley TD, Doorn JA: Inhibition of the oxidative metabolism of 3,4-dihydroxyphenylacetaldehyde, a reactive intermediate of dopamine metabolism, by 4-hydroxy-2-nonenal. Neurotoxicology. 2007 Jan;28(1):76-82. Epub 2006 Aug 1. [16956664 ]
  • Jiang H, Jiang Q, Liu W, Feng J: Parkin suppresses the expression of monoamine oxidases. J Biol Chem. 2006 Mar 31;281(13):8591-9. Epub 2006 Feb 2. [16455660 ]
  • Cadet JL, Ali SF, Rothman RB, Epstein CJ: Neurotoxicity, drugs and abuse, and the CuZn-superoxide dismutase transgenic mice. Mol Neurobiol. 1995 Aug-Dec;11(1-3):155-63. [8561959 ]
  • Pestana M, Jardim H, Correia F, Vieira-Coelho MA, Soares-da-Silva P: Renal dopaminergic mechanisms in renal parenchymal diseases and hypertension. Nephrol Dial Transplant. 2001;16 Suppl 1:53-9. [11369822 ]
  • Kim DH, Kim SY, Park SY, Han MJ: Metabolism of quercitrin by human intestinal bacteria and its relation to some biological activities. Biol Pharm Bull. 1999 Jul;22(7):749-51. [10443478 ]
  • Gao K, Xu A, Krul C, Venema K, Liu Y, Niu Y, Lu J, Bensoussan L, Seeram NP, Heber D, Henning SM: Of the major phenolic acids formed during human microbial fermentation of tea, citrus, and soy flavonoid supplements, only 3,4-dihydroxyphenylacetic acid has antiproliferative activity. J Nutr. 2006 Jan;136(1):52-7. [16365058 ]
Synthesis Reference: Joray, Marcel; Breuninger, Manfred. Process for the preparation of phenolic compounds. PCT Int. Appl. (2007), 15pp.
Material Safety Data Sheet (MSDS) Download (PDF)
External Links:
ResourceLink
CAS102-32-9
ChEBI17612
ChemSpider4573910
HMDBHMDB01336
KEGGC01161
MetaboLightsMTBLC17612
PubChem5460350